初中數(shù)學勾股定理一等獎說課稿(精選14篇)
作為一位兢兢業(yè)業(yè)的人民教師,時常需要用到說課稿,編寫說課稿助于積累教學經(jīng)驗,不斷提高教學質量。那么什么樣的說課稿才是好的呢?以下是小編為大家收集的初中數(shù)學勾股定理一等獎說課稿(精選14篇),希望能夠幫助到大家。
初中數(shù)學勾股定理一等獎說課稿 篇1
各位專家領導:
上午好!今天我說課的課題是《勾股定理》。
一、教材分析:
(一)本節(jié)內容在全書和章節(jié)的地位。
這節(jié)課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時。勾股定理是學生在已經(jīng)掌握了直角三角形有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關系,它可以解決直角三角形的主要依據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進行運用。
(二)三維教學目標:
1、知識與能力目標。
。1)理解并掌握勾股定理的內容和證明,能夠靈活運用勾股定理及其計算;
(2)通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
2、過程與方法目標。
在探索勾股定理的過程中,讓學生經(jīng)歷“觀察-猜想-歸納-驗證”的數(shù)學思想,并體會數(shù)形結合和從特殊到一般的思想方法。
3、情感態(tài)度與價值觀。
通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學生的民族自豪感和鉆研精神。
(三)教學重點、難點:
1、教學重點:勾股定理的證明與運用
2、教學難點:用面積法等方法證明勾股定理
3、難點成因:
對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎上,大膽猜想數(shù)學結論,而這需要學生具備一定的分析、歸納的思維方法和運用數(shù)學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。
4、突破措施:
。1)創(chuàng)設情景,激發(fā)思維:
創(chuàng)設生動、啟發(fā)性的問題情景,激發(fā)學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態(tài)下進入學習過程;
。2)自主探索,敢于猜想:
充分讓自己動手操作,大膽猜想數(shù)學問題的結論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協(xié)作,從而形成生動的課堂環(huán)境;
。3)張揚個性,展示風采:
實行“小組合作制”,各小組中自己推薦一人擔任“發(fā)言人”,一人擔任“書記員”,在討論結束后,由小組的“發(fā)言人”匯報本小組的討論結果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價。這樣既保證討論的有效性,也調動了學生的學習積極性。
二、教法與學法分析:
1、教法分析:
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結構和心理特征,本節(jié)課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神;镜慕虒W程序是“創(chuàng)設情景-動手操作-歸納驗證-問題解決-課堂小結-布置作業(yè)”六個方面。
2、學法分析:
新課標明確提出要培養(yǎng)“可持續(xù)發(fā)展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養(yǎng)學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。
三、教學過程設計:
(一)創(chuàng)設情景:
多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?
問題的設計有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,老師要注意引導學生將實際問題轉化為數(shù)學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節(jié)課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數(shù)學來源于生活”,學習數(shù)學是為更好“服務于生活”。
(二)動手操作:
1、課件出示課本P99圖19.2.1:
觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結論?
學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發(fā)現(xiàn)SP+SQ=SR(此時讓小組“發(fā)言人”發(fā)言),從而讓學生通過正方形的面積之間的關系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則AC2+BC2=AB2。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。
2、緊接著讓學生思考:
上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出P100圖19.2.2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數(shù)學思想及學習過程,提高學生的分析問題和解決問題的能力。
3、再問:
當邊長不為整數(shù)的直角三角形是否也存在這一結論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學生計算。這樣設計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結論更具有一般性。
(三)歸納驗證:
1、歸納:
通過動手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關系,讓學生在整個學習過程中感受學數(shù)學的樂趣,,使學生學會“文字語言”與“數(shù)學語言”這兩種表達方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學生的主體作用,真正獲取知識,解決問題。
2、驗證:
先后三次驗證“勾股定理”這一結論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數(shù)形結合和從特殊到一般的數(shù)學思想,而且這一過程也有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。
(四)問題解決:
1、讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。
2、自學課本P101例1,然后完成P102練習。
(五)課堂小結:
1、小組成員從內容、數(shù)學思想方法、獲取知識的途徑進行小結,后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個小組表現(xiàn)最佳。
2、教師用多媒體介紹“勾股定理史話”。
。1)《周髀算徑》:西周的商高(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。
。2)康熙數(shù)學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創(chuàng)。
3、目的:對學生進行愛國主義教育,激勵學生奮發(fā)向上。
(六)布置作業(yè):
課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯(lián)系。
以上內容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領導對本次說課提出寶貴的意見,謝謝!
初中數(shù)學勾股定理一等獎說課稿 篇2
一、教材分析
。ㄒ唬┙滩牡匚
這節(jié)課是九年制義務教育初級中學教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
(二)教學目標
知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。
過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數(shù)形結合和從特殊到一般的思想。
情感態(tài)度與價值觀:激發(fā)學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學。
(三)教學重點:經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。
二、教法與學法分析:
學情分析:七年級學生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力,他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠,另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強。
教法分析:結合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式,選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。
學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。
三、教學過程設計
1.創(chuàng)設情境,提出問題
2.實驗操作,模型構建
3.回歸生活,應用新知
4.知識拓展,鞏固深化
5.感悟收獲,布置作業(yè)
創(chuàng)設情境提出問題
(1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹2002年國際數(shù)學的一枚紀念郵票大會會標設計意圖:通過圖形欣賞,感受數(shù)學美,感受勾股定理的文化價值。
(2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?
設計意圖:以實際問題為切入點引入新課,反映了數(shù)學來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學化”的過程,從而引出下面的環(huán)節(jié)。
實驗操作模型構建
1.等腰直角三角形(數(shù)格子)
2.一般直角三角形(割補)
問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?
設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。
問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)
設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。
通過以上實驗歸納總結勾股定理。
設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊——一般的認知規(guī)律。
回歸生活應用新知
讓學生解決開頭情景中的問題,前呼后應,增強學生學數(shù)學、用數(shù)學的意識,增加學以致用的樂趣和信心。
知識拓展鞏固深化
基礎題,情境題,探索題。
設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展,知識的運用得到升華。
基礎題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學問題?你能解決所提出的問題嗎?
設計意圖:這道題立足于雙基,通過學生自己創(chuàng)設情境,鍛煉了發(fā)散思維。
情境題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?
設計意圖:增加學生的生活常識,也體現(xiàn)了數(shù)學源于生活,并用于生活。
探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。
設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力。
感悟收獲布置作業(yè):這節(jié)課你的收獲是什么?
作業(yè):1、課本習題2.1
2、搜集有
關勾股定理證明的資料。
板書設計探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么
設計說明:
1.探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數(shù)形結合及從特殊到一般的思想方法。
2.讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現(xiàn)出來的思維水平、表達水平。
初中數(shù)學勾股定理一等獎說課稿 篇3
今天我說課的課題是《勾股定理》。本課選自九年義務教育人教版八年級數(shù)學下冊第十八章第一節(jié)的第一課時。
一、教學背景分析
1、教材分析
本節(jié)課是學生在已經(jīng)掌握了直角三角形有關性質的基礎上進行學習的,通過2002年國際數(shù)學家大會的會徽圖案,引入勾股定理,進而探索直角三角形三邊的數(shù)量關系,并應用它解決問題。學好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎,而且為今后學習解直角三角形奠定基礎,在實際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質,是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。
2、學情分析
通過前面的學習,學生已具備一些平面幾何的知識,能夠進行一般的推理和論證,但如何通過拼圖來證明勾股定理,學生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學生動手、動口、動腦,化難為易,深入淺出,讓學生感受學習知識的樂趣。
3、教學目標:
根據(jù)八年級學生的認知水平,依據(jù)新課程標準和教學大綱的要求,我制定了如下的教學目標:
知識與能力目標:了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內容,會用面積法證明勾股定理;培養(yǎng)在實際生活中發(fā)現(xiàn)問題總結規(guī)律的意識和能力。
過程與方法目標:通過創(chuàng)設情境,導入新課,引導學生探索勾股定理,并應用它解決問題,運用了觀察、演示、實驗、操作等方法學習新知。
情感態(tài)度價值觀目標:感受數(shù)學文化,激發(fā)學生學習的熱情,體驗合作學習成功的喜悅,滲透數(shù)形結合的思想。
4、教學重點、難點
通過分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實踐中有著廣泛應用。因此我確定本課的教學
重難點為探索和證明勾股定理。
二、教材處理
根據(jù)學生情況,為有效培養(yǎng)學生能力,在教學過程中,以創(chuàng)設問題情境為先導,運用直觀教具、多媒體等手段,激發(fā)學生學習興趣,調動學生學習積極性,并開展以探究活動為主的教學模式,邊設疑,邊講解,邊操作,邊討論,啟發(fā)學生提出問題,分析問題,進而解決問題,以達到突出重點,攻破難點的目的。
三、教學策略
1、教法
“教必有法,而教無定法”,只有方法恰當,才會有效。根據(jù)本課內容特點和八年級學生思維活動特點,我采用了引導發(fā)現(xiàn)教學法,合作探究教學法,逐步滲透教學法和師生共研相結合的方法。
2、學法
“授人以魚,不如授人以漁”,通過設計問題序列,引導學生主動探究新知,合作交流,體現(xiàn)學習的自主性,從不同層次發(fā)掘不同學生的不同能力,從而達到發(fā)展學生思維能力的目的,發(fā)掘學生的創(chuàng)新精神。
3、教學模式
根據(jù)新課標要求,要積極倡導自主、合作、探究的學習方式,我采用了創(chuàng)設情境——探究新知——反饋訓練的教學模式,使學生獲取知識,提高素質能力。
四、教學過程
。ㄒ唬﹦(chuàng)設情境,引入新課
利用多媒體課件,給學生出示2002年國際數(shù)學家大會的場面,通過觀察會徽圖案,提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?從現(xiàn)實生活中提出趙爽弦圖,激發(fā)學生學習的熱情和求知欲,同時為探索勾股定理提供背景材料,進而引出課題。
。ǘ┮龑W生,探究新知
1、初步感知定理:這一環(huán)節(jié)選擇教材的圖片,講述畢達哥拉斯到朋友家做客時發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關系,創(chuàng)設感知情境,提出問題:現(xiàn)在也請你觀察,看看有什么發(fā)現(xiàn)?教師配合演示,使問題更形象、具體。適當補充等腰直角三角形邊長為1、2時,所形成的規(guī)律,使學生再次感知發(fā)現(xiàn)的規(guī)律。
2、提出猜想:在活動1的基礎上,學生已發(fā)現(xiàn)一些規(guī)律,進一步通過活動2進行看一看,想一想,做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質,使學生由淺到深,由特殊到一般的提出問題,啟發(fā)學生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。
3、證明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明,通過活動3,充分引導學生利用直觀教具,進行拼圖實驗,在動手操作中放手讓學生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵創(chuàng)新,小組競賽,引入競爭,教師參與討論,與學生交流,獲取信息,從而有針對性地引導學生進行證法的探究,使學生創(chuàng)造性地得出拼圖的多種方法,并使學生在學習的過程中,感受到自我創(chuàng)造的快樂,從而分散了教學難點,發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。培養(yǎng)了學生的發(fā)散思維、一題多解和探究數(shù)學問題的能力。
4、總結定理:讓學生自己總結定理,不完善之處由教師補充。在前面探究活動的基礎上,學生很容易得出直角三角形的三邊數(shù)量關系即勾股定理,培養(yǎng)了學生的語言表達能力和歸納概括能力。
。ㄈ┓答佊柧,鞏固新知
學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課目標的達成情況和加強對學生能力的培養(yǎng),設計一組有坡度的練習題:A組動腦筋,想一想,是本節(jié)基礎知識的理解和直接應用;B組求陰影部分的面積,建立了新舊知識的聯(lián)系,培養(yǎng)學生綜合運用知識的能力。C組議一議,是一道實際應用題型,給學生施展才智的機會,讓學生獨立思考后,討論交流得出解決問題的方法,增強了數(shù)學來源于實踐,反過來又作用于實踐的應用意識,達到了學以致用的目的。
。ㄋ模w納小結,深化新知
本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的的問題是什么?通過小結,使學生進一步明確掌握教學目標,使知識成為體系。
。ㄎ澹┎贾米鳂I(yè),拓展新知
讓學生收集有關勾股定理的證明方法,下節(jié)課展示、交流,使本節(jié)知識得到拓展、延伸,培養(yǎng)了學生能力和思維的深刻性,讓學生感受數(shù)學深厚的文化底蘊。
。┌鍟O計,明確新知
本節(jié)課的板書設計分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點,層次清楚,便于學生掌握,為獲得知識服務。
初中數(shù)學勾股定理一等獎說課稿 篇4
一、說教材
本課時是華師大版八年級(上)數(shù)學第14章第二節(jié)內容,是在掌握勾股定理的基礎上對勾股定理的應用之一。勾股定理是我國古數(shù)學的一項偉大成就。勾股定理為我們提供了直角三角形的三邊間的數(shù)量關系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應用于數(shù)學和實際生活的各個方面。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析,使學生獲得較為直觀的印象,通過聯(lián)系和比較,了解勾股定理在實際生活中的廣泛應用。據(jù)此,制定教學目標如下:
1、知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關計算,深入對勾股定理的理解。
2、過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的。
3、情感與態(tài)度目標:感受數(shù)學在生活中的應用,感受數(shù)學定理的美。
教學重點:勾股定理的應用。
教學難點:勾股定理的正確使用。
教學關鍵:在現(xiàn)實情境中捕抓直角三角形,確定好直角三角形之后,再應用勾股定理。
二、說教法和學法
1、以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。
2、切實體現(xiàn)學生的主體地位,讓學生通過觀察,分析,討論,操作,歸納理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,引導學生觀察,操作,分析,證明,使學生獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。
三、教學程序
本節(jié)內容的教學主要體現(xiàn)在學生的動手,動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設置如下:
回顧問:
勾股定理的內容是什么?勾股定理揭示了直角三角形三邊之間的關系,今天我們來學習這個定理在實際生活中的應用。
新授課例
1、有一個圓柱,它的高AB等于4厘米,底面周長等于20厘米,在圓柱下底面的A點有一只螞蟻,它想吃到上底面與A點相對的C點處的食物,沿圓柱側面爬行的最短路線是多少?(課本P57圖14.2.1)
、賹W生取出自制圓柱,嘗試從A點到C點沿圓柱側面畫出幾條路線。思考:那條路線最短?
、谌鐖D,將圓柱側面剪開展成一個長方形,從A點到C點的最短路線是什么?你畫得對嗎?
③螞蟻從A點出發(fā),想吃到C點處的食物,它沿圓柱側面爬行的最短路線是什么?
思路點撥:引導學生在自制的圓柱側面上尋找最短路線;提醒學生將圓柱側面展開成長方形,引導學生觀察分析發(fā)現(xiàn)“兩點之間的所有線中,線段最短”。學生在自主探索的基礎上興趣高漲,氣氛異常的活躍,他們發(fā)現(xiàn)螞蟻從A點往上爬到B點后順著直徑爬向C點爬行的路線是最短的!我也意外的發(fā)現(xiàn)了這種爬法是正確的,但是課本上是順著側面往上爬的,我就告訴學生:“課本中的圓柱體是沒有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2、(課本P58圖14.2.3)
思路點撥:廠門的寬度是足夠的,這個問題的關鍵是觀察當卡車位于廠門正中間時其高度是否小于CH,點D在離廠門中線0.8米處,且CD⊥AB,與地面交于H,尋找出Rt△OCD,運用勾股定理求出2.3m,CD===0.6,CH=0.6+2.3=2.9>2.5可見卡車能順利通過。詳細解題過程看課本引導學生完成P58做一做。
課堂小練
1、課本P58練習第1,2題。
2、探究:一門框的尺寸如圖所示,一塊長3米,寬2.2米的薄木板是否能從門框內通過?為什么?
小結
直角三角形在實際生活中有更為廣泛的應用希望同學們能緊緊抓住直角三角形的性質,學透勾股定理的具體應用,那樣就能很輕松的解決現(xiàn)實生活中的許多問題,達到事倍功半的效果。
布置作業(yè)
課本P60習題14.2第1,2,3題。
初中數(shù)學勾股定理一等獎說課稿 篇5
一、教材分析:
。ㄒ唬、本節(jié)課在教材中的地位作用
“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內容之一。課標要求學生必須掌握。
。ǘ、教學目標:
根據(jù)數(shù)學課標的要求和教材的具體內容,結合學生實際我確定了本節(jié)課的教學目標。
知識技能:
1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形
過程與方法:
1、通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過程
2、通過用三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)與形結合方法的應用
3、通過勾股定理的逆定理的證明,體會數(shù)與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。
情感態(tài)度:
1、通過用三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)與形的內在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關系
2、在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神
。ㄈW情分析:
盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據(jù)已知條件構造一個直角三角形,根據(jù)學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣如何添輔助線就是解決它的關鍵,這樣就確定了本節(jié)課的重點、難點和關鍵。
重點:勾股定理逆定理的應用
難點:勾股定理逆定理的證明
關鍵:輔助線的添法探索
二、教學過程:
本節(jié)課的設計原則是:使學生在動手操作的基礎上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結構與幾何知識結構之間筑了一個信息流通渠道,進而達到完善學生的數(shù)學認識結構的目的。
。ㄒ唬、復習回顧:復習回顧與勾股定理有關的內容,建立新舊知識之間的聯(lián)系。
(二)、創(chuàng)設問題情境
一開課我就提出了與本節(jié)課關系密切、學生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結,然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發(fā)了學生的興趣,因而全身心地投入到學習中來,創(chuàng)造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數(shù)學就在身邊。
。ㄈW生在教師的指導下嘗試解決問題,總結規(guī)律(包括難點突破)
因為幾何來源于現(xiàn)實生活,對初二學生來說選擇適當?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。
這樣設計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學模型。
接下來就是利用這個數(shù)學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯(lián)想到了全等三角形的性質,證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。
在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學生看書的習慣,這也是在培養(yǎng)學生的自學能力。
(四)、組織變式訓練
本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學生口答,讓所有的學生都能完成。第二題則進了一層,字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運用以往知識的能力。第三題則要求更高,要求學生能夠推出可能的結論,這些作法培養(yǎng)了學生靈活轉換、舉一反三的能力,發(fā)展了學生的思維,提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋,調節(jié)教法,同時注意加強有針對性的個別指導,把發(fā)展學生的思維和隨時把握學生的學習效果結合起來。
。ㄎ澹w納小結,納入知識體系
本節(jié)課小結先讓學生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結合的思想,并告訴同學今天的勾股定理逆定理是同學們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認識問題的好方法,希望同學在課外練習時注意用這種方法,這都是教給學習方法。
。⒆鳂I(yè)布置
由于學生的思維素質存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。A組是基本的思維訓練項目,全體都要做,這樣有利于學生學習習慣的培養(yǎng),以及提高他們學好數(shù)學的信心。B組題適當加大難度,拓寬知識,供有能力又有興趣的學生做,日積月累,對訓練和培養(yǎng)他們的思維素質,發(fā)展學生的個性有積極作用。
三、說教法、學法與教學手段
為貫徹實施素質教育提出的面向全體學生,使學生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學內容、教學要求以及初二學生的年齡和心理特征以及學生的認知規(guī)律和認知水平,本節(jié)課我主要采用了以學生為主體,引導發(fā)現(xiàn)、操作探究的教學方法,即不違反科學性又符合可接受性原則,這樣有利于培養(yǎng)學生的學習興趣,調動學生的學習積極性,發(fā)展學生的.思維;有利于培養(yǎng)學生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學生從感性認識上升到理性認識,加深對所學知識的理解和掌握;有利于突破難點和突出重點。
此外,本節(jié)課我還采用了理論聯(lián)系實際的教學原則,以教師為主導、學生為主體的教學原則,通過聯(lián)系學生現(xiàn)有的經(jīng)驗和感性認識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學生獨立探討、主動獲取知識。
總之,本節(jié)課遵循從生動直觀到抽象思維的認識規(guī)律,力爭最大限度地調動學生學習的積極性;力爭把教師教的過程轉化為學生親自探索、發(fā)現(xiàn)知識的過程;力爭使學生在獲得知識的過程中得到能力的培養(yǎng)。
初中數(shù)學勾股定理一等獎說課稿 篇6
一、教材分析:
。ㄒ唬┙滩牡牡匚慌c作用
從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關系,為后續(xù)學習解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應用。
從學生認知結構上看,它把形的特征轉化成數(shù)量關系,架起了幾何與代數(shù)之間的橋梁;勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。
根據(jù)數(shù)學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數(shù)學思考、問題解決、情感態(tài)度。其中情感態(tài)度方面,以我國數(shù)學文化為主線,激發(fā)學生熱愛祖國悠久文化的情感。
。ǘ┲攸c與難點
為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。
二、教學與學法分析
教學方法葉圣陶說過"教師之為教,不在全盤授予,而在相機誘導。"因此教師利用幾何直觀提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。
學法指導為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。
三、教學過程
我國數(shù)學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節(jié)課設計為以下五個環(huán)節(jié)。
首先,情境導入古韻今風
給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。讓學生觀察并思考三個正方形面積之間的關系?它們圍成了怎么樣三角形,反映在三邊上,又蘊含著怎么樣數(shù)學奧秘呢?寓教于樂,激發(fā)學生好奇、探究的欲望。
第二步追溯歷史解密真相
勾股定理的探索過程是本節(jié)課的重點,依照數(shù)學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。
從上面低起點的問題入手,有利于學生參與探索。學生很容易發(fā)現(xiàn),在等腰三角形中存在如下關系。巧妙的將面積之間的關系轉化為邊長之間的關系,體現(xiàn)了轉化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計算更具說服力。將圖形轉化為邊在格線上的圖形,以便于計算圖形面積,體現(xiàn)了數(shù)形結合的思想。學生會想到用"數(shù)格子"的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學生利用"割"和"補"的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。
突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現(xiàn)了"從特殊到一般"的認知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產(chǎn)生的錯誤,也為下面"勾三股四弦五"的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示"割"的方法,"補"的方法,有的學生可能會發(fā)現(xiàn)平移的方法,旋轉的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養(yǎng)學生的類比、遷移以及探索問題的能力。
使用幾何畫板動態(tài)演示,使幾何與代數(shù)之間的關系可視化。當為直角三角形時,改變三邊長度三邊關系不變,當∠α為銳角或鈍角時,三邊關系就改變了,進而強調了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。
以上三個環(huán)節(jié)層層深入步步引導,學生歸納得到命題1,從而培養(yǎng)學生的合情推理能力以及語言表達能力。
感性認識未必是正確的,推理驗證證實我們的猜想。
第三步推陳出新借古鼎新
教材中直接給出"趙爽弦圖"的證法對學生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學生的大腦,讓學生發(fā)揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質疑,對于不同的拼圖方案給予肯定。從而體現(xiàn)出"學生是學習的主體,教師是組織者、引導者與合作者"這一教學理念。學生會發(fā)現(xiàn)兩種證明方案。
方案1為趙爽弦圖,學生講解論證過程,再現(xiàn)古代數(shù)學家的探索方法。方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經(jīng)歷由表面到本質,由合情推理到演繹推理的發(fā)掘過程,體會數(shù)學的嚴謹性。對比"古"、"今"兩種證法,讓學生體會"吹盡黃沙始到金"的喜悅,感受到"青出于藍而勝于藍"的自豪感。板書勾股定理,進而給出字母表示,培養(yǎng)學生的符號意識。
教師對"勾、股、弦"的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數(shù)學文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學生欣賞數(shù)學的精巧、優(yōu)美。
第四步取其精華古為今用
我按照"理解—掌握—運用"的梯度設計了如下三組習題。
(1)對應難點,鞏固所學。
(2)考查重點,深化新知。
。3)解決問題,感受應用。
第五步溫故反思任務后延
在課堂接近尾聲時,我鼓勵學生從"四基"的要求對本節(jié)課進行小結。進而總結出一個定理、二個方案、三種思想、四種經(jīng)驗。
然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學生的理念。
初中數(shù)學勾股定理一等獎說課稿 篇7
一、教材分析
教材所處的地位與作用
“探索勾股定理”是人教版八年級《數(shù)學》下冊內容!肮垂啥ɡ怼笔前才旁趯W生學習了三角形、全等三角形、等腰三角形等有關知識之后,它揭示了直角三角形三邊之間的一種美妙關系,將數(shù)與形密切聯(lián)系起來,在幾何學中占有非常重要的位置。同時勾股定理在生產(chǎn)、生活中也有很大的用途。
二、教學目標
綜上分析及教學大綱要求,本課時教學目標制定如下:
1、知識目標
知道勾股定理的由來,初步理解割補拼接的面積證法。
掌握勾股定理,通過動手操作利用等積法理解勾股定理的證明過程。
2、能力目標
在探索勾股定理的過程中,讓學生經(jīng)歷“觀察——合理猜想——歸納——驗證”的數(shù)學思想,并體會數(shù)形結合以及由特殊到一般的思想方法,培養(yǎng)學生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學探究問題的能力。
3、情感目標
通過觀察、猜想、拼圖、證明等操作,使學生深刻感受到數(shù)學知識的發(fā)生、發(fā)展過程。
介紹“趙爽弦圖”,讓學生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發(fā)學生的數(shù)學激情及愛國情感。
三、教學重難點
本課重點是掌握勾股定理,讓學生深刻感悟到直角三角形三邊所具備的特殊關系。由于八年級學生構造能力較低以及對面積證法的不熟悉,因此本課的難點便是勾股定理的證明。
四、教學問題診斷
本節(jié)主要攻克的問題就是本節(jié)的難點:勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗證數(shù)學結論的數(shù)形結合思想,對于學生來說,有些陌生,難以理解,又加之數(shù)學課本身的課程特征,在講解時,沒有文科那么深動形象,所以針對這一現(xiàn)狀,我在教法和學法上都進行了改進。
五、教法與學法分析
[教學方法與手段]
針對八年級學生的知識結構和心理特征,本節(jié)課選擇引導探索法,由淺入深,由特殊到一般地提出問題,引導學生自主探索,合作交流,并利用多媒體進行教學。
[學法分析]
在教師組織引導下,采用自主探索、合作交流的方式,讓學生自己實驗,自己獲取知識,并感悟學習方法,借此培養(yǎng)學生動手、動口、動腦能力,使學生真正成為學習的主體。讓學生感受到自己是學習的主體,增強他們的主動感和責任感,這樣對掌握新知會事半功倍。
六、教學流程設計
1、創(chuàng)設情境,引入新課
本節(jié)課開始利用多媒體介紹了在北京召開的2002年國際數(shù)學家大會的會標,其圖案為“趙爽弦圖”,由此導入新課,是為了激發(fā)學生的興趣和民族自豪感,它是課堂教學的重要一環(huán)!昂玫拈_始是成功的一半”,在課的起始階段迅速集中學生注意力,把他們的思緒帶進特定的學習情境中,激發(fā)學生濃厚的學習興趣和強烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學生思維的閘門,激勵探究,使學生的學習狀態(tài)由被動變?yōu)橹鲃,在輕松愉悅的氛圍中學到知識。
2、觀察發(fā)現(xiàn),類比猜想
讓學生仔細觀察畢達哥拉斯朋友家的瓷磚(圖1),從而得到特殊的等腰直角三角形三邊關系,緊接著由特殊到一般,讓學生合理猜測:是否任意直角三角形都符合這個“三邊關系”的結論?同學們很輕易的得到了結論。最后對此結論通過在網(wǎng)格中數(shù)格子進行驗證,讓學生經(jīng)歷了“觀察——合理猜測——歸納——驗證”的這一數(shù)學思想。在數(shù)格子的驗證過程中,發(fā)現(xiàn)任意直角三角形(圖2)斜邊上長出的正方形中網(wǎng)格不規(guī)則,沒法數(shù)出。通過同學們的討論,發(fā)現(xiàn)數(shù)不出來的原因是格子不規(guī)則,從而想到了用補或割的方法進行計算,其原則就是由不規(guī)則經(jīng)過割補變?yōu)橐?guī)則。
3、實驗探究,證明結論
因為勾股定理的出現(xiàn),使數(shù)學從單一的純計算進入了幾何圖形的證明,所以為了讓學生感受數(shù)形結合這一數(shù)學思想,讓學生親自動手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補,變?yōu)橐?guī)則的c2,又因兩塊割補前后面積相等,從而得到勾股定理:a2+b2=c2,也因此引入了“等積法”證明勾股定理。
4、練兵之際
這是“總統(tǒng)證法”,此時讓學生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學們熟悉“等積法”,第二讓學生感受數(shù)學的地位之高,第三在沒有講解的情況下,學生自己得出了“總統(tǒng)證法”,大大增強了學生的自信心和自豪感。
5、自己動手,拼出弦圖
讓同學們拿出了提前準備好的四個全等的邊長為a、b、c的直角三角形進行拼圖,小組活動,拼出自己喜愛的圖形,但有一個前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時已經(jīng)是把課堂全部還給了學生,讓他們在數(shù)學的海洋中馳騁,提供這種學習方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學生們拼得很好,并且都給出了正確的證明,在黑板上盡情地展示了一番。
6、總結反思
通過這一堂課,我認為數(shù)學教學的核心不是知識本身,而是數(shù)學的思維方式,而培養(yǎng)這種數(shù)學思維方式需要豐富的數(shù)學活動。在活動中學生可以用自己創(chuàng)造與體驗的方法來學習數(shù)學,這樣才能真正的掌握數(shù)學,真正擁有數(shù)學的思維方式,這一課的學習就是通過讓學生自主探索知識,從而將其轉化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學習,教學模式也從教師講授為主轉為了學生動腦、動手、自主研究,小組學習討論交流為主,把數(shù)學課堂轉化為“數(shù)學實驗室”,學生通過自己活動得出結論,使創(chuàng)新精神與實踐能力得到了發(fā)展。
七、設計說明
1、根據(jù)學生的知識結構,我采用的數(shù)學流程是:創(chuàng)設情境引入新課——觀察發(fā)現(xiàn)類比猜想——實驗探究證明結論——自己動手拼出弦圖——總結反思這五部分。這一流程體現(xiàn)了知識的發(fā)生、形成和發(fā)展的過程,讓學生經(jīng)歷了觀察——猜想——歸納——驗證的思想和數(shù)形結合的思想。
2、探索定理采用了面積法,引導學生利用實驗由特殊到一般的數(shù)學思想對直角三角形三邊關系進行了研究,并得出了結論。這種方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好的思維品質的形成有重要作用,對學生終身發(fā)展也有很大作用。
初中數(shù)學勾股定理一等獎說課稿 篇8
本節(jié)課設計力求讓學生參與知識的發(fā)現(xiàn)過程,體現(xiàn)以學生為主體,以促進學生發(fā)展為本的教學理念,變知識的傳授者為學生自主探求知識的引導者、指導者、合作者。并利用多媒體,直觀教具演示,營造一個聲像同步,能動能靜的教學情境,給學生提供一個探索的空間,促使學生主動參與,親身體驗勾股定理的探索證明過程,從而鍛煉思維、激發(fā)創(chuàng)造,優(yōu)化課堂教學。努力做到有傳統(tǒng)的教學課堂像實驗課堂轉變,使學生真正成為學習的主人,培養(yǎng)了學生的素質能力,達到了良好的教學效果。
(一)創(chuàng)設情境,引入新課
課前首先讓學生閱讀趙爽的弦圖相關知識讓他們體會中國古代科學的發(fā)達。在課堂上緊密結合前面已學的知識進行導入。如提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?你還記得三角形的三邊遵循什么規(guī)律嗎?等等一系列的問題激起學生學生的熱情和求知欲,然后順利進入探究。本節(jié)我們就來學習一下直角三角形的三條邊除具備前面的性質外還有什么新的特征。
(二)引導學生,探究新知
①初步感知定理:這一環(huán)節(jié)我選擇了教材的圖片,講述畢達哥拉斯到朋友家做客時發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關系,創(chuàng)設感知情境,提出問題,現(xiàn)在請同學觀察,看看有什么發(fā)現(xiàn)?(學案出示)使問題更形象、具體。
②提出猜想:在活動1的基礎上,學生已發(fā)現(xiàn)一些規(guī)律,進一步通過活動2進行看一看、填一填、想一想、議一議、做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質,學生再由淺到深,由特殊到一般的提出問題,啟發(fā)學生得出猜想,直角三角形的兩直角邊的平分和等于斜邊的平方。
、圩C明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明:通過活動3我充分引導學生利用直觀教具,進行拼圖實驗,在動手操中放手讓學生思考、討論、合作、交流、探究問題的多種方法。,并對學生的做法給予表揚,使學生在學習過程中,感受到自我創(chuàng)造的快樂,從而分散了教學難點,發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。
、芸偨Y定理:讓學生自己總結,不完善之處由教師補充,在前面探究活動的基礎上,學生容易得出直角三角形的三邊數(shù)量關系即勾股定理。
(三)反饋訓練,鞏固新知
學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課的達成情況和加強對學生能力的培養(yǎng),我設計了一組坡有難度的練習題。
(四)歸納總結,深化新知
本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的問題是什么?……
通過小結,使學生進一步明確掌握教學目標,使知識成為體系。
(五)布置作業(yè)。拓展新知
讓學生收集有關勾股定理的證明方法,下節(jié)課展示、交流。使本節(jié)知識得到拓展、延伸,培養(yǎng)了學生能力和思維的深刻性,讓學生感受數(shù)學深厚的文化底蘊。
(六)板書設計,明確新知
初中數(shù)學勾股定理一等獎說課稿 篇9
一、教材分析
教材的地位和作用
它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來,在數(shù)學的發(fā)展中起著重要的作用。
因此他的教育教學價值就具體體現(xiàn)在如下三維目標中:
知識與技能:
1、經(jīng)歷勾股定理的探索過程,體會數(shù)形結合思想。
2、理解直角三角形三邊的關系,會應用勾股定理解決一些簡單的實際問題。
過程與方法:
1、經(jīng)歷觀察—猜想—歸納—驗證等一系列過程,體會數(shù)學定理發(fā)現(xiàn)的過程,由特殊到一般的解決問題的方法。
2、在觀察、猜想、歸納、驗證等過程中培養(yǎng)學生們的數(shù)學語言表達能力和初步的邏輯推理能力。
情感、態(tài)度與價值觀:
1、通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習興趣。
2、在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學生們的合作意識和然所精神。
3、讓學生們通過動手實踐,增強探究和創(chuàng)新意識,體驗研究過程,學習研究方法,逐步養(yǎng)成一種積極的生動的,自助合作探究的學習方式。
由于八年級的學生們具有一定分析能力,但活動經(jīng)驗不足,所以
本節(jié)課教學重點:勾股定理的探索過程,并掌握和運用它。
教學難點:分割,補全法證面積相等,探索勾股定理。
二、教法學法分析:
要上好一堂課,就是要把所確定的三維目標有機地溶入到教學過程中去,所以我采用了“引導探究式”的教學方法:
先從學生們熟知的生活實例出發(fā),以生活實踐為依托,將生活圖形數(shù)學化,然后由特殊到一般地提出問題,引導學生們在自主探究與合作交流中解決問題,同時也真正體現(xiàn)了數(shù)學課堂是學生們自己的課堂。
學法:我想通過“操作+思考”這樣方式,有效地讓學生們在動手、動腦、自主探究與合作交流中來發(fā)現(xiàn)新知,同時讓學生們感悟到:學習任何知識的最好方法就是自己去探究。
三、教學程序設計
1、故事引入新課,激起學生們學習興趣。
牛頓,瓦特的故事,讓學生們科學家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學,我們應該學會觀察、思考,將學習與生活緊密結合起來。畢達哥拉斯的發(fā)現(xiàn)引入新課。
2、探索新知
在這里我設計了四個內容:
①探索等腰直角三角形三邊的關系
、谶呴L為3、4、5為邊長的直角三角形的三邊關系
③學生們畫兩直角邊為2,6的直角三角形,探索三邊的關系
、苋厼閍、b、c的直角三角形的三邊的關系,(證明)
、莨垂啥ɡ須v史介紹,讓學生們體會勾股定理的文化價值。
體現(xiàn)從特殊到一般的發(fā)現(xiàn)問題的過程。
3、新知運用:
、倥e出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)
、谠谥苯侨切沃,已知∠B=90°,AB=6,BC=8,求AC。
、垡鲆粋人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?
、苋鐖D,學校有一塊長方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內走出了一條“路”,他們僅僅少走了步路(假設2步為1米),卻踩傷了花草.
4、小結本課:
學完了這節(jié)課,你有什么收獲?
老師補充:科學家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學,我們應該學會觀察、思考,將學習與生活緊密結合起來。數(shù)學來源于實踐,而又應用于實踐。解決一個問題的方法是多樣性的,我們要多思考。勾股定是數(shù)學史上的明珠,證明方法有很多種,我們將在下一節(jié)課學習它。
初中數(shù)學勾股定理一等獎說課稿 篇10
尊敬的各位評委、老師:
大家好!
我說課的題目是華師版八年級上冊第十四章第一節(jié)第一課時《勾股定理》。
教材分析:
如果說數(shù)學思想是解決數(shù)學問題的一首經(jīng)典老歌,那么本節(jié)課蘊含的由特殊到一般的思想、數(shù)學建模的思想、轉化的思想就是歌中最為活躍的音符!本節(jié)的內容是在學習了二次根式之后的教學,是在學生已經(jīng)掌握了直角三角形的有關性質的基礎上進行的后繼學習,是中學數(shù)學幾個重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識的靈魂,在實際生活中有著極其廣泛的應用。
勾股定理的發(fā)現(xiàn)、驗證和應用蘊含著豐富的文化價值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。
新課標下的數(shù)學教學不僅是知識的教學,更應注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學中的地位和作用,結合初二學生不愛表現(xiàn)、好靜不好動的特點,我確定本節(jié)教學目標如下:
1、探索并利用拼圖證明勾股定理。
2、利用勾股定理解決簡單的數(shù)學問題。
3、感受數(shù)學文化,體會解決問題方法的多樣性和數(shù)形結合的思想。
本著課標的要求,在吃透教材的基礎上,我確定本節(jié)的教學重點、難點、關鍵如下:
勾股定理的證明和簡單應用是本節(jié)的重點,用拼圖的方法證明勾股定理是難點,而解決難點的關鍵是充分利用圖形面積的各種表示方法構造恒等式。
為了講清重點、突破難點、抓住關鍵,使學生達到預定目標,我對教法和學法分析如下:
教法分析:
新課程標準強調要從學生已有的經(jīng)驗出發(fā),最大限度的激發(fā)學生學習積極性,新課程下的數(shù)學教師更應是學生學習活動的組織者、引導者、合作者,因此,鑒于教材的重點和初二學生的認知水平,我以學生充分預習為前提,以學生的動手操作、講解為中心,讓學生親歷親為,體會做數(shù)學的過程,激發(fā)學生的探索興趣,使課堂活躍起來,提高課堂效率。運用觀察法、歸納法、引導發(fā)現(xiàn)法、討論法等多種教學方法相結合的形式,讓學生充分展示預習成果,體驗成功的快樂,為終身學習和發(fā)展打下堅實的基礎。為了增大課堂容量、給學生創(chuàng)設高效的數(shù)學課堂,給學生提供足夠從事數(shù)學活動的時間,以導學案的形式、運用多媒體輔助教學。
學法分析:
學法是學生再生知識的法寶,為了把學生學習過程當作認知事物的過程來解決,教學中我首先引導學生先動手操作,再合作交流,培養(yǎng)學生良好的學習品質和與人合作的能力;接下來,我讓學生獨立思考,點撥學生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點,然后通過學生展示成果讓學生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關健,以自己拼圖操作、講解展示預習成果突破定理證明這一難點,指導學生嚴謹、合理的書寫格式,培養(yǎng)學生的邏輯思維能力和語言表達能力。
為了充分調動學生的學習積極性,創(chuàng)設優(yōu)化高效的數(shù)學課堂,我以導學案的方式循序見進的設計教學流程。
以學生必讀課本48—52頁,選讀課本55、56頁的課前預習為前提,共分四個環(huán)節(jié)來進行教學
1、勾股定理的探究:讓學生歷經(jīng)量一量、算一算、想一想的由特殊到一般的數(shù)學思想引導好學生課前預習,再以檢查預習成果的形式為新知的探究作好鋪墊。
2、勾股定理的證明:以學生拼圖展示、講解預習成果的形式完成對定理的證明。
3、勾股定理的應用:以課堂練習、學生個性補充和老師適當?shù)膫性化追加的形式實現(xiàn)對定理的靈活應用。
4、學后反思:以學生小結的形式引導學生從知識、情感兩方面實現(xiàn)對本節(jié)內容的鞏固與升華。
說創(chuàng)新點:
為了給學生營造一個和諧、民主、平等而高效的數(shù)學課堂,我以新課程標準的基本理念和總體目標為指導思想,面向全體學生,選擇適當?shù)钠瘘c和方法,充分發(fā)揮學生的主體地位與教師主導作用相統(tǒng)一的原則。教學中注重學生的動手操作能力的培養(yǎng),化繁為簡,化抽象為直觀。例如我以展示預習成果為主線,以學生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費時費力的方式,既讓每個學生都能積極的參與進來,培養(yǎng)學生的語言表達能力、邏輯推理能力,又達到了直觀高效的效果。
教學中我注重人文環(huán)境的創(chuàng)設,使數(shù)學課堂充滿親切、民主的氣氛,例如整節(jié)課我以學生的操作、展示、講解、個性補充為主,拉近了數(shù)學與學生的距離,激發(fā)了學生的學習興趣;為了使不同的學生得到不同的發(fā)展,人人學有價值的數(shù)學,在教學中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設身邊暖房工程為情境,體現(xiàn)數(shù)學的生活化;以一題多變、中考題改編等形式進行練習題的層層深入,體現(xiàn)數(shù)學的變化美。
以學生個性補充的形式促進課堂新的生成,最大限度的培養(yǎng)學生創(chuàng)新思維,使不同的人在數(shù)學上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設了具有獨特教學風格的作文式數(shù)學課堂。而多媒體教學的引入更為學生提供了廣闊的思考空間和時間;同時,我注重對學生進行數(shù)學文化的薰陶和數(shù)學思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結時由“勾股樹”到“智慧樹”的希望寄語。
初中數(shù)學勾股定理一等獎說課稿 篇11
一、教材分析
勾股定理是學生在已經(jīng)掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一。它揭示了一個三角形三條邊之間的數(shù)量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一。在實際生活中用途很大,教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,讓學生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
據(jù)此,制定教學目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養(yǎng)學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教學重點:勾股定理的證明和應用。
教學難點:勾股定理的證明。
二、教法和學法
教法和學法是體現(xiàn)在整個教學過程中的,本課的教法和學法體現(xiàn)如下特點:
1、以自學輔導為主,充分發(fā)揮教師的主導作用;運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。
2、切實體現(xiàn)學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理。提高學生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。
三、教學程序
本節(jié)內容的教學主要體現(xiàn)在學生動手、動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設計如下:
(一)創(chuàng)設情境以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。
2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態(tài)。
3、板書課題,出示學習目標。
。ǘ┏醪礁兄斫饨滩
教師指導學生自學教材,通過自學感悟理解新知,體現(xiàn)了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。
(三)質疑解難討論歸納
1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)學生的表現(xiàn)欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
。1)這兩個圖形有什么特點?
。2)你能寫出這兩個圖形的面積嗎?
。3)如何運用勾股定理?是否還有其他形式?
這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習強化提高
1、出示練習,學生分組解答,并由學生總結解題規(guī)律。課堂教學中動靜結合,以免引起學生的疲勞。
2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習,進一步提高學生運用知識的能力,對練習中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
。ㄎ澹w納總結練習反饋
引導學生對知識要點進行總結,梳理學習思路。分發(fā)自我反饋練習,學生獨立完成。
本課意在創(chuàng)設愉悅和諧的樂學氣氛,優(yōu)化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創(chuàng)新精神和實踐能力得到培養(yǎng)。
初中數(shù)學勾股定理一等獎說課稿 篇12
尊敬的各位領導,各位老師:
大家好!今天我說課的內容是初中八年級數(shù)學人教版教材第十八章第一節(jié)《勾股定理》(第一課時),下面我分五部分來匯報我這節(jié)課的教學設計,這就是"教材分析"、"學情分析"、"教法選擇"、"學法指導"、"教學過程"。
一、教材分析
(一)教材地位和作用
勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系,將幾何圖形與數(shù)字聯(lián)系起來。它在數(shù)學的發(fā)展中起過重要的作用,在生產(chǎn)生活中有著廣泛的應用。而且它在其它自然學科中也常常用到。因此,這節(jié)課有著舉足輕重的地位。
。ǘ┙虒W目標
根據(jù)新課程標準的要求和本課的特點,結合學生的實際情況,我確定了本課的教學目標:
1、知識與技能方面
了解勾股定理的文化背景,經(jīng)歷探索勾股定理的過程,掌握直角三角形三邊之間的數(shù)量關系,并能簡單應用。
2、過程與方法方面
經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,能感受到數(shù)學思考過程的條理性,發(fā)展數(shù)學的說理和簡單的推理的意識,和語言表達的能力,并體會數(shù)形結合和特殊到一般的思想方法。
3、情感態(tài)度與價值觀方面
(1)通過了解勾股定理的歷史,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。
。2)通過研究一系列富有探究性的問題,培養(yǎng)學生與他人交流、合作的意識和品質。
。ㄈ┙虒W重點難點
教學重點:掌握勾股定理,并能用它來解決一些簡單的問題。
教學難點:勾股定理的證明。
二、學情分析
我們班日常經(jīng)常使用多媒體輔助教學。經(jīng)過一年多的幾何學習,學生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學生解題思維能力比較高,能夠正確歸納所學知識,通過學習小組討論交流,能夠形成解決問題的思路。現(xiàn)在的學生已經(jīng)厭倦教師單獨的說教方式,希望教師設計便于他們進行觀察的幾何環(huán)境,給他們自己探索、發(fā)表自己見解和表現(xiàn)自己才華的機會;更希望教師滿足他們的創(chuàng)造愿望。
三、教法選擇
根據(jù)本節(jié)課的教學目標、教學內容以及學生的認知特點,結合我校的“當堂達標”教學模式,我在教法上采用引導發(fā)現(xiàn)法為主,并以分析法、討論法相結合。設計"觀察——討論—歸納"的教學方法,意在幫助學生通過自己動手實驗和直觀情景觀察,從實踐中獲取知識,并通過討論來深化對知識的理解。本節(jié)課采用了多媒體輔助教學,能夠直觀、生動的反應圖形,增加課堂的容量,同時有利于突出重點、分散難點,增強教學形象性,更好的提高課堂效率。
四、學法指導:
為了充分體現(xiàn)《新課標》的要求,培養(yǎng)學生的觀察分析能力,邏輯思維能力,積累豐富的數(shù)學學習經(jīng)驗,這節(jié)課主要采用觀察分析,自主探索與合作交流的學習方法,使學生積極參與教學過程。在教學過程中展開思維,培養(yǎng)學生提出問題、分析問題、解決問題的能力,進一步體會觀察、類比、分析、從特殊到一般等數(shù)學思想。借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主人。
五、教學過程
根據(jù)《新課標》中"要引導學生投入到探索與交流的學習活動中"的教學要求,本節(jié)課的教學過程我是這樣設計的:
。ㄒ唬﹦(chuàng)設情境,引入新課
一個設計合理的情境引入可以說在一定程度上決定著學生能否帶著興趣積極投入到本節(jié)課的學習中。為了體現(xiàn)數(shù)學源于生活,數(shù)學是從人的需要中產(chǎn)生的,學習數(shù)學的目的是為了用數(shù)學解決實際問題。我設計了以下題目:
星期日老師帶領全班同學去某山風景區(qū)游玩,同學們看到山勢險峻,查看景區(qū)示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,∠ACB=90°,你能用所學知識算出纜車路線AB長應為多少?
答案是不能的。然后教師指出,通過這節(jié)課的學習,問題將迎刃而解。
設計意圖:以趣味性題目引入。從而設置懸念,激發(fā)學生的學習興趣。教師引導學生把實際問題轉化為數(shù)學問題,這其中滲透了一種數(shù)學思想,對于學生也是一種挑戰(zhàn),能激發(fā)學生探究的欲望,自然引出下面的環(huán)節(jié)。
緊接著出示本節(jié)課的學習目標:
1、了解勾股定理的文化背景,體驗勾股定理的探索過程。
2、掌握勾股定理的內容,并會簡單應用。
。ǘ┕垂啥ɡ淼奶剿
1、猜想結論
(1)探究一:等腰直角三角形三邊關系。
由課本64頁畢達哥拉斯的故事,探究等腰直角三角形三邊關系。結合課件中格點圖形的面積,學生自主探究,通過計算、討論、總結,得出結論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。
在此過程中,給學生充分的時間、觀察、比較、交流,最后通過活動讓學生用語言概括總結。
提問:等腰直角三角形有這樣的性質,其他的直角三角形也有這樣的性質嗎?
。2)探究二:一般的直角三角形三邊關系。
在課件中的格點圖形中,利用面積,再次探究直角三角形的三邊關系。學生自主探究,通過計算、討論、總結,得出結論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。
設計意圖:組織學生進行討論,在此基礎上教師引導學生從三邊的平方有何大小關系入手進行觀察。教師在多媒體課件上直觀地演示。通過學生自己探索、討論,由學生自己得出結論。這樣,讓學生參與定理的再發(fā)現(xiàn)過程,他們通過自己觀察、計算所得出的定理,在心理產(chǎn)生自豪感,從而增強學生的學習數(shù)學的自信心。
2、證明猜想
目前世界上證明該勾股定理的方法有很多種,而我國古代數(shù)學家利用拼接、割補圖形,計算面積的思路提供了很多種證明方法,下面我們通過古人趙爽的方法進行證明。學生分組活動,根據(jù)圖形的面積進行計算,推導出勾股定理的一般形式:a+b=c。即直角三角形兩直角邊的平方和等于斜邊的平方、
設計意圖:通過利用多媒體課件的演示,更直觀、形象的向學生介紹用拼接、割補圖形,計算面積的證明方法,使學生認識到證明的必要性、結論的確定性,感受到前人的偉大和智慧。
3、簡要介紹勾股定理命名的由來
我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學家商高就提出,將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被記載于我國古代著名的數(shù)學著作《周髀算經(jīng)》中、我國稱這個結論為"勾股定理",西方畢達哥拉斯于公元前五世紀發(fā)現(xiàn)了勾股定理,但他比商高晚出生五百多年。
設計意圖:對比以上事實對學生進行愛國主義教育,激勵他們奮發(fā)向上。
。ㄈ┕垂啥ɡ淼膽
1、利用勾股定理,解決引入中的問題。體會數(shù)學在實際生活中的應用。
2、教學例1:課本66頁探究1
師生討論、分析:木板的寬2、2米大于1米,所以橫著不能從門框內通過。
木板的寬2、2米大于2米,所以豎著不能從門框內通過。
因為對角線AC的長度最大,所以只能試試斜著能否通過。
從而將實際問題轉化為數(shù)學問題。
提示:
。1)在圖中構造出一個直角三角形。(連接AC)
。2)知道直角△ABC的那條邊?
(3)知道直角三角形兩條邊長求第三邊用什么方法呢?
設計意圖:此題是將實際為題轉化為數(shù)學問題,從中抽象出Rt△ABC,并求出斜邊AC的長。本例意在滲透實際問題和勾股定理的知識聯(lián)系。通過系列問題的設置和解決,旨在降低難度,分散難點,使難點予以突破,讓學生掌握勾股定理在具體問題中的應用,使學生獲得新知,體驗成功,從而增加學習興趣。
。ㄋ模┱n堂練習習題18、11、5。學生板演,師生點評。
設計意圖:通過練習使學生加深對勾股定理的理解,讓學生比較練習題和例題中條件的異同,進一步讓學生理解勾股定理的運用。
。ㄎ澹┱n堂小結
對學生提問:"通過這節(jié)課的學習有什么收獲?"
學生同桌間暢談自己的學習感受和體會,并請個別學生發(fā)言。
設計意圖:讓學生自己小結,活躍了氣氛,做到全員參與,理清了知識脈絡,強化了重點,培養(yǎng)了學生口頭表達能力。
。┻_標訓練與反饋
設計意圖:必做題較為簡單,要求全體學生完成;選作題有一點的難度,基礎較好的學生能夠完成,體現(xiàn)分層教學。
以上內容,我僅從"說教材","說學情"、"說教法"、"說學法"、"說教學過程"五個方面來說明這堂課"教什么"和"怎么教",也闡述了"為什么這樣教",讓學生人人參與,注重對學生活動的評價,探索過程中,會為學生創(chuàng)設一個和諧、寬松的情境。希望得到各位專家領導的指導與指正,謝謝!
初中數(shù)學勾股定理一等獎說課稿 篇13
(一)創(chuàng)設問題情境,引入新課:
在這一環(huán)節(jié)中,我設計了這樣一個情境,多媒體動畫展示,米老鼠來到了數(shù)學王國里的三角形城堡,要求只利用一根繩子,構造一個直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預測大多數(shù)同學會無從下手,這樣引出課題。只有學習了勾股定理的逆定理后,大家都能幫助米老鼠進入城堡,我認為:“大疑而大進”這樣做,充分調動學習內容,激發(fā)求知欲望,動漫演示,又有了很強的趣味性,做到課之初,趣已生,疑已質。
(二)實踐猜想
本環(huán)節(jié)要圍繞以下幾個活動展開:
1、算一算:求以線段a,b為直角邊的直角三角形的斜邊c長。
2、猜一猜,以下列線段長為三邊的三角形形狀
3、擺一擺利用方便筷來操作問題2,利用量角器來度量,驗證問題2的發(fā)現(xiàn)。
4、用恰當?shù)恼Z言敘述你的結論
在算一算中學生復習了勾股定理,猜一猜和擺一擺中學生小組合作動手實踐,在問題1的基礎上做出合理的推測和猜想,這樣分層遞進找到了學生思維的最近發(fā)展區(qū),面向不同層次的每一名學生,每一名學生都有參與數(shù)學活動的機會,最后運用恰當?shù)恼Z言表述,得到了勾股定理的逆定理。在整個過程的活動中,教師給學生充分的時間和空間,教師以平等的身份參與小組活動中,傾聽意見,幫助指導學生的實踐活動。學生的擺一擺的過程利用實物投影儀展示,在活動中教師關注;
1)學生的參與意識與動手能力。
2)是否清楚三角形三邊長度的平方關系是因,直角三角形是果。既先有數(shù),后有形。
3)數(shù)形結合的思想方法及歸納能力。
(三)推理證明
八年級正是學生由實驗幾何向推理幾何過渡的重要時期,多數(shù)學生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構造直角三角形才能完成,而構造直角三角形就成為解決問題的關鍵,直接拋給學生證明,無疑會石沉大海,所以,我采用分層導進的方法,以求一石激起千層浪。
1.三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關系?你是怎樣得到的?請簡要說明理由?
2.△ABC三邊長a,b,c滿足a2+b2=c2與a,b為直角三角形之間有何關系?試說明理由?
為了較好完成教師的誘導,教師要給學生獨立思考的時間,要給學生在組內交流個別意見的時間,教師要深入小組指導與幫助,并利用實物投影儀展示小組成果,取得階段性成果再探究問題2.這樣由特殊到一般,凸顯了構造直角三角形這一解決問題的關鍵,讓他們在不斷的探究過程中,親自體驗參與發(fā)現(xiàn)創(chuàng)造的愉悅,有效的突破了難點。
初中數(shù)學勾股定理一等獎說課稿 篇14
尊敬的各位評委,各位老師:
大家好!
我今天說課的內容是《勾股定理的逆定理》第一課時。下面我將從教材、目標、重點難點、教法、教學流程等幾個方面向各位專家闡述我對本節(jié)課的教學設想。
一、說教材。
這節(jié)內容選自《蘇科版》義務教育課程標準實驗教科書數(shù)學八年級上冊第三章《勾股定理》中的第二節(jié)。勾股定理的逆定理是幾何中一個非常重要的定理,它是對直角三角形的再認識,也是判斷一個三角形是不是直角三角形的一種重要方法。還是向學生滲透“數(shù)形結合”這一數(shù)學思想方法的很好素材。八年級正是學生由實驗幾何向推理幾何過渡的重要時期,通過對勾股定理逆定理的探究,培養(yǎng)學生的分析思維能力,發(fā)展推理能力。在教學中滲透類比、轉化,從特殊到一般的思想方法。
二、說教學目標。
教學目標支配著教學過程,教學目標的制定和落實是實施課堂教學的關鍵?紤]到學生已有的認知結構心理特征及本班學生的實際情況,我制定了如下教學目標:
1、知識與技能:探索并掌握直角三角形判別思想,會應用勾股定理及逆定理解決實際問題。
2、過程與方法:通過對勾股定理的逆定理的探索和證明,經(jīng)歷知識的發(fā)生,發(fā)展與形成的過程,體驗“數(shù)形結合”方法的應用。
3、情感、態(tài)度、價值觀:培養(yǎng)數(shù)學思維以及合情推理意識,感悟勾股定理和逆定理的應用價值。滲透與他人交流、合作的意識和探究精神,體驗數(shù)與形的內在聯(lián)系。
三、說教學重點、難點,關鍵。
本著課程標準,在吃透教材的基礎上,我確立了如下的教學重、難點及關鍵。
重點:理解并掌握勾股定理的逆定理,并會應用。
難點:理解勾股定理的逆定理的推導。
關鍵:動手驗證,體驗勾股定理的逆定理。
四、說教法。
在本節(jié)課中,我設計了以下幾種教法學法:
情景教學法,啟發(fā)教學法,分層導學法。
讓學生實踐活動,動手操作,看自己畫的三角形是否為一個直角三角形。體會觀察,作出合理的推測。同時通過引入,讓學生了解古代都用這種方法來確定直角的。對學生進行動手能力培養(yǎng)的同時,引導命題的形成過程,自然地得出勾股定理的逆定理。既鍛煉了學生的實踐、觀察能力,又滲透了人文和探究精神。
五、說教學流程。
1、動手實踐,檢測猜測。引導學生分別以3cm,4cm,5cm,2.5cm,6cm,6.5cm和4cm,7.5cm,8.5cm,2cm,5cm,6cm為邊畫出兩個三角形,觀察猜測三角形的形狀。再引導啟發(fā)學生從這兩個活動中歸納思考:如果三角形的三邊長a、b、c滿足,那么此三角形是什么三角形?在整個過程的活動中,盡量給學生充足的時間和空間,以平等的身份參與到學生活動中來,幫助指導學生的實踐活動。
2、探索歸納,證明猜測。
勾股定理逆定理的證明不同于以往的幾何圖形的證明,需要構造直角三角形才能完成,構造直角三角形就成為解決問題的關鍵。如果此時直接將問題拋給學生證明,學生定會覺得無從下手。我就采用分層導進的方法,讓學生從具體的例子中感受總結,再歸納到中抽象中來。于是我就設計了這樣的兩個步驟:
先補充一道例題:三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么聯(lián)系?你是怎么得到的?請簡單說明理由。
然后再更改上面的例題,變?yōu)椤鰽BC三邊長為a、b、c,滿足,與以a、b為直角邊的直角三角形之間有什么聯(lián)系呢?你們又是如何想的?試說明理由。通過推理證明得出勾股定理的逆定理。
在這個過程中,要努力引導學生聯(lián)想到“全等”,進而設法構造直角三角形,讓學生在不斷的嘗試、探究的過程中,總結出勾股定理的逆定理。有效地突破本節(jié)的難點。同時提出原命題與逆命題及其關系。培養(yǎng)良好的數(shù)學學習習慣對學生的可持續(xù)發(fā)展是非常重要的,歸納出定理后,與學生一起分析定理的題設與結論,并與勾股定理進行對比,明白兩定理是互逆定理。
3、嘗試運用,熟悉定理。
課本中的例題是讓學生進一步熟練掌握勾股定理的逆定理及其運用的步驟。
4、分層訓練,能力升級。有針對性有層次性地布置練習,及時反饋教學效果,查缺被漏,并對有困難的學生給予指導。
5、總結內容,強化認識。使學生再次感悟勾股定理的逆定理,體會定理的互逆性,加深對“數(shù)形結合”的理解,更深刻地理解數(shù)學思想方法在解題中的地位和作用,激發(fā)學生學習數(shù)學的興趣。
6、布置作業(yè)。有代表性地布置不同層次的作業(yè),尊重學生的個體差異,滿足多樣化學習的需要。
結束語:我的說課完了,非常感謝各位領導和專家給了我這次學習、聆聽、參與、鍛煉的機會。謝謝大家!
【初中數(shù)學勾股定理一等獎說課稿】相關文章:
初中數(shù)學《勾股定理》說課稿07-08
初中數(shù)學勾股定理說課稿07-30
初中數(shù)學《勾股定理》說課稿范文03-22
初中數(shù)學勾股定理說課稿模板04-21
《勾股定理》初中數(shù)學說課稿08-04
初中數(shù)學說課稿《探索勾股定理》12-31
數(shù)學勾股定理說課稿04-20