毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

七年級數(shù)學上冊教案

時間:2024-11-05 11:43:45 曉麗 數(shù)學教案 我要投稿

七年級數(shù)學上冊教案(精選15篇)

  作為一名教職工,通常需要用到教案來輔助教學,教案是實施教學的主要依據(jù),有著至關重要的作用。那么應當如何寫教案呢?下面是小編幫大家整理的七年級數(shù)學上冊教案,歡迎閱讀,希望大家能夠喜歡。

七年級數(shù)學上冊教案(精選15篇)

  七年級數(shù)學上冊教案 1

  教學目標:

  1.了解正數(shù)與負數(shù)是實際生活的需要.

  2.會判斷一個數(shù)是正數(shù)還是負數(shù).

  3.會用正負數(shù)表示互為相反意義的量.

  教學重點:

  會判斷正數(shù)、負數(shù),運用正負數(shù)表示具有相反意義的量,理解表示具有相反意義的量的意義.

  教學難點:

  負數(shù)的引入.

  教與學互動設計:

  (一)創(chuàng)設情境,導入新課

  課件展示珠穆朗瑪峰和吐魯番盆地,讓同學感受高于水平面和低于水平面的不同情況.

  (二)合作交流,解讀探究

  舉出一些生活中常遇到的具有相反意義的量,如溫度是零上7℃和零下5℃,買進90張課桌與賣出80張課桌,汽車向東行50米和向西行120米等.

  想一想以上都是一些具有相反意義的量,你能用小學算術中的數(shù)來表示出每一對量嗎?你能再舉一些日常生活中具有相反意義的量嗎?該如何表示它們呢?

  為了用數(shù)表示具有相反意義的量,我們把具有其中一種意義的量,如零上溫度、前進、收入、上升、高出等規(guī)定為正的',而把具有與它意義相反的量,如零下溫度、后退、支出、下降、低于等規(guī)定為負的,正的量用算術里學過的數(shù)表示,負的量用學過的數(shù)前面加上“-”(讀作負)號來表示(零除外).

  活動每組同學之間相互合作交流,一同學說出有關相反意義的兩個量,由其他同學用正負數(shù)表示.

  討論什么樣的數(shù)是負數(shù)?什么樣的數(shù)是正數(shù)?0是正數(shù)還是負數(shù)?自己列舉正數(shù)、負數(shù).

  總結正數(shù)是大于0的數(shù),負數(shù)是在正數(shù)前面加“-”號的數(shù),0既不是正數(shù),也不是負數(shù),是正數(shù)與負數(shù)的分界點.

  (三)應用遷移,鞏固提高

  【例1】舉出幾對具有相反意義的量,并分別用正、負數(shù)表示.

  【提示】具有相反意義的量有“上升”與“下降”,“前”與“后”、“高于”與“低于”、“得到”與“失去”、“收入”與“支出”等.

  【例2】在某次乒乓球檢測中,一只乒乓球超過標準質量0.02g,記作+0.02g,那么-0.03g表示什么?

  【例3】某項科學研究以45分鐘為1個時間單位,并記為每天上午10時為0,10時以前記為負,10時以后記為正.例如,9:15記為-1,10:45記為1等等.依此類推,上午7:45應記為()

  A.3B.-3C.-2.5D.-7.45

  【點撥】讀懂題意是解決本題的關鍵.7:45與10:00相差135分鐘.

  (四)總結反思,拓展升華

  為了表示現(xiàn)實生活中具有相反意義的量引進了負數(shù).正數(shù)就是我們過去學過(除零外)的數(shù),在正數(shù)前加上“-”號就是負數(shù),不能說“有正號的數(shù)是正數(shù),有負號的數(shù)是負數(shù)”.另外,0既不是正數(shù),也不是負數(shù).

  1.下表是小張同學一周中簡記儲蓄罐中錢的進出情況表(存入記為“+”):

  星期日一二三四五六

  (元)+16+5.0-1.2-2.1-0.9+10-2.6

  (1)本周小張一共用掉了多少錢?存進了多少錢?

  (2)儲蓄罐中的錢與原來相比是多了還是少了?

  (3)如果不用正、負數(shù)的方法記賬,你還可以怎樣記賬?比較各種記賬的優(yōu)劣.

  2.數(shù)學游戲:4個同學站或蹲成一排,從左到右每個人編上號:1,2,3,4.用“+”表示“站”,“-”(負號)表示“蹲”.

  (1)由一個同學大聲喊:+1,-2,-3,+4,則第1、第4個同學站,第2、第3個同學蹲,并保持這個姿勢,然后再大聲喊:-1,-2,+3,+4,如果第2、第4個同學中有改變姿勢的,則表示輸了,作小小的“懲罰”;

  (2)增加游戲難度,把4個同學順序調整一下,但每個人記作自己原來的編號,再重復(1)中的游戲.

  (五)課堂跟蹤反饋

  夯實基礎

  1.填空題:

  (1)如果節(jié)約用水30噸記為+30噸,那么浪費20噸記為噸.

  (2)如果4年后記作+4年,那么8年前記作年.

  (3)如果運出貨物7噸記作-7噸,那么+100噸表示.

  (4)一年內,小亮體重增加了3kg,記作+3kg;小陽體重減少了2kg,則小陽增加了.

  2.中午12時,水位低于標準水位0.5米,記作-0.5米,下午1時,水位上漲了1米,下午5時,水位又上漲了0.5米.

  (1)用正數(shù)或負數(shù)記錄下午1時和下午5時的水位;

  (2)下午5時的水位比中午12時水位高多少?

  提升能力

  3.糧食每袋標準重量是50公斤,現(xiàn)測得甲、乙、丙三袋糧食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正數(shù)表示,請用正數(shù)和負數(shù)記錄甲、乙、丙三袋糧食的超重數(shù)和不足數(shù).

  (六)課時小結

  1.與以前相比,0的意義又多了哪些內容?

  2.怎樣用正數(shù)和負數(shù)表示具有相反意義的量?(用正數(shù)表示其中具有一種意義的量,另一種量用負數(shù)表示)

  七年級數(shù)學上冊教案 2

  教學目標

  1.理解掌握有理數(shù)的減法法則,會將有理數(shù)的減法運算轉化為加法運算;

  2.通過把減法運算轉化為加法運算,向學生滲透轉化思想,通過有理數(shù)的減法運算,培養(yǎng)學生的運算能力。

  3.通過揭示有理數(shù)的減法法則,滲透事物間普遍聯(lián)系、相互轉化的辯證唯物主義思想。

  教學建議

  (一)重點、難點分析

  本節(jié)重點是運用有理數(shù)的減法法則熟練進行減法運算。解有理數(shù)減法的計算題需嚴格掌握兩個步驟:首先將減法運算轉化為加法運算,然后依據(jù)有理數(shù)加法法則確定所求結果的'符號和絕對值.理解有理數(shù)的減法法則是難點,突破的關鍵是轉化,變減為加.學習中要注意體會:小學遇到的小數(shù)減大數(shù)不會減的問題解決了,小數(shù)減大數(shù)的差是負數(shù),在有理數(shù)范圍內,減法總可以實施.

 。ǘ┲R結構

 。ㄈ┙谭ńㄗh

  1.教師指導學生閱讀教材后強調指出:由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉化為加法.有理數(shù)的加法和減法,當引進負數(shù)后就可以統(tǒng)一用加法來解決.

  2.不論減數(shù)是正數(shù)、負數(shù)或是零,都符合有理數(shù)減法法則.在使用法則時,注意被減數(shù)是永不變的

  3.因為任何減法運算都可以統(tǒng)一成加法運算,所以我們沒有必要再規(guī)定幾個帶有減法的運算律,這樣有利于知識的鞏固和記憶.

  4.注意引入負數(shù)后,小的數(shù)減去大的數(shù)就可以進行了,其差可用負數(shù)表示。

  七年級數(shù)學上冊教案 3

  教學目標:

  知識與能力

  能正確運用角度表示方向,并能熟練運算和角有關的問題。

  過程與方法

  能通過實際操作,體會方位角在是實際生活中的應用,發(fā)展抽象思維。

  情感、態(tài)度、價值觀

  能積極參與數(shù)學學習活動,培養(yǎng)學生對數(shù)學的好奇心和求知欲。

  教學重點:方位角的表示方法。

  教學難點:方位角的準確表示。

  教學準備:預習書上有關內容

  預習導學:

  如圖所示,請說出四條射線所表示的方位角?

  教學過程;

  一、創(chuàng)設情景,談話導入

  在現(xiàn)實生活中,有一種角經(jīng)常用于航空、航海,測繪中領航員常用地圖和羅盤進行這種角的測定,這就是方位角,方位角應用比較廣泛,什么是方位角呢?

  二、精講點拔,質疑問難

  方位角其實就是表示方向的'角,這種角以正北,正南方向為基準描述物體的方向,如“北偏東30°”,“南偏西40°”等,方位角不能以正東,正西為基準,如不能說成“東偏北60°,西偏南50°”等,但有時如北偏東45°時,我們可以說成東北方向。

  三、課堂活動,強化訓練

  例1如圖:指出圖中射線OA、OB所表示的方向。

  (學生個別回答,學生點評)

  例2若燈塔位于船的北偏東30°,那么船在燈塔的什么方位?

  (小組討論,個別回答,教師)

  例3如圖,貨輪O在航行過程中發(fā)現(xiàn)燈塔A在它的南偏東60°的方向上,同時在它北偏東60°,南偏西10°,西北方向上又分別發(fā)現(xiàn)了客輪B,貨輪C和海島D,仿照表示燈塔方位的方法,畫出表示客輪B、貨輪C、海島D方向的射線。

  (教師分析,一學生上黑板,學生點評)

  四、延伸拓展,鞏固內化

  例4某哨兵上午8時測得一艘船的位置在哨所的南偏西30°,距哨所10km的地方,上午10時,測得該船在哨所的北偏東60°,距哨所8km的地方。

  (1)請按比例尺1:000畫出圖形。

 。í毩⑼瓿桑煌瑢W上黑板,學生點評)

 。2)通過測量計算,確定船航行的方向和進度。

 。ㄐ〗M討論,得出結論,代表發(fā)言)

  五、布置作業(yè)、當堂反饋

  練習:請使用量角器、刻度尺畫出下列點的位置。

  (1)點A在點O的北偏東30°的方向上,離點O的距離為3cm。

 。2)點B在點O的南偏西60°的方向上,離點O的距離為4cm。

 。3)點C在點O的西北方向上,同時在點B的正北方向上。

  作業(yè):書P1407、9

  七年級數(shù)學上冊教案 4

  教學目標和要求:

  1.理解單項式及單項式系數(shù)、次數(shù)的概念。

  2.會準確迅速地確定一個單項式的系數(shù)和次數(shù)。

  3.初步培養(yǎng)學生觀察、分析、抽象、概括等思維能力和應用意識。

  4.通過小組討論、合作學習等方式,經(jīng)歷概念的形成過程,培養(yǎng)學生自主探索知識和合作交流能力。

  教學重點和難點:

  重點:掌握單項式及單項式的系數(shù)、次數(shù)的概念,并會準確迅速地確定一個單項式的系數(shù)和次數(shù)。

  難點:單項式概念的建立。

  教學方法:

  分層次教學,講授、練習相結合。

  教學過程:

  一、復習引入:

  1、 列代數(shù)式

  (1)若正方形的邊長為a,則正方形的面積是 ;

  (2)若三角形一邊長為a,并且這邊上的高為h,則這個三角形的面積為 ;

  (3)若x表示正方形棱長,則正方形的體積是 ;

  (4)若m表示一個有理數(shù),則它的相反數(shù)是 ;

  (5)小明從每月的零花錢中貯存x元錢捐給希望工程,一年下來小明捐款 元。

  (數(shù)學教學要緊密聯(lián)系學生的生活實際,這是新課程標準所賦予的任務。讓學生列代數(shù)式不僅復習前面的知識,更是為下面給出單項式埋下伏筆,同時使學生受到較好的思想品德教育。)

  2、 請學生說出所列代數(shù)式的意義。

  3、 請學生觀察所列代數(shù)式包含哪些運算,有何共同運算特征。

  由小組討論后,經(jīng)小組推薦人員回答,教師適當點撥。

  (充分讓學生自己觀察、自己發(fā)現(xiàn)、自己描述,進行自主學習和合作交流,可極大的激發(fā)學生學習的積極性和主動性,滿足學生的表現(xiàn)欲和探究欲,使學生學得輕松愉快,充分體現(xiàn)課堂教學的開放性。)

  二、講授新課:

  1.單項式:

  通過特征的描述,引導學生概括單項式的概念,從而引入課題:單項式,并板書歸納得出的單項式的概念,即由數(shù)與字母的乘積組成的代數(shù)式稱為單項式。然后教師補充,單獨一個數(shù)或一個字母也是單項式,如a,5。

  2.練習:判斷下列各代數(shù)式哪些是單項式?

  (1) ; (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5。

  (加強學生對不同形式的單項式的直觀認識,同時利用練習中的單項式轉入單項式的系數(shù)和次數(shù)的教學)

  3.單項式系數(shù)和次數(shù):

  直接引導學生進一步觀察單項式結構,總結出單項式是由數(shù)字因數(shù)和字母因數(shù)兩部分組成的。以四個單項式a2h,2r,abc,-m為例,讓學生說出它們的數(shù)字因數(shù)是什么,從而引入單項式系數(shù)的概念并板書,接著讓學生說出以上幾個單項式的字母因數(shù)是什么,各字母指數(shù)分別是多少,從而引入單項式次數(shù)的概念并板書。

  4.例題:

  例1:判斷下列各代數(shù)式是否是單項式。如不是,請說明理由;如是,請指出它的系數(shù)和次數(shù)。

 、賦+1; ② ; ③ ④- a2b。

  答:①不是,因為原代數(shù)式中出現(xiàn)了加法運算;②不是,因為原代數(shù)式是1與x的商;

  ③是,它的系數(shù)是,次數(shù)是2; ④是,它的系數(shù)是- ,次數(shù)是3。

  例2:下面各題的判斷是否正確?

  ①-7xy2的系數(shù)是7; ②-x2y3與x3沒有系數(shù); ③-ab3c2的次數(shù)是0+3+2;

 、-a3的系數(shù)是-1; ⑤-32x2y3的次數(shù)是7; ⑥ r2h的系數(shù)是 。

  通過其中的反例練習及例題,強調應注意以下幾點:

 、賵A周率是常數(shù);

 、诋斠粋單項式的系數(shù)是1或-1時,1通常省略不寫,如x2,-a2b等;

 、蹎雾検酱螖(shù)只與字母指數(shù)有關。

  5.游戲:

  規(guī)則:一個小組學生說出一個單項式,然后指定另一個小組的學生回答他的系數(shù)和次數(shù);然后交換,看兩小組哪一組回答得快而準。

  (學生自行編題是一種創(chuàng)造性的思維活動,它可以改變一味由教師出題的形式,且由編題學生指定某位同學回答,可使課堂氣氛活躍,學生思維活躍,使學生能夠透徹理解知識,同時培養(yǎng)同學之間的'競爭意識。)

  6.課堂練習:課本p56:1,2。

  三、課堂小結:

 、賳雾検郊皢雾検降南禂(shù)、次數(shù)。

 、诟鶕(jù)教學過程反饋的信息對出現(xiàn)的問題有針對性地進行小結。

 、弁ㄟ^判斷一個單項式的系數(shù)、次數(shù),培養(yǎng)學生理解運用新知識的能力,已達到本節(jié)課的教學目的。

  四、課堂作業(yè): 課本p59:1,2。

  板書設計:

  《單項式》 1.單項式的定義: 2.例1: 例2: 學生練習:

  教學后記:

  本節(jié)課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的理解和掌握情況,將直接影響到后續(xù)學習。為突出重點,突破難點,教學中要加強直觀性,即為學生提供足夠的感知材料,豐富學生的感性認識,幫助學生認識概念,同時也要注重分析,亦即在剖析單項式結構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數(shù)、次數(shù),為進一步學習新知做好鋪墊。

  針對七年級學生學習熱情高,但觀察、分析、認識問題能力較弱的特點,教學時將以啟發(fā)為主,同時輔之以討論、練習、合作交流等學習活動,達到掌握知識的目的,并逐步培養(yǎng)起學生觀察、分析、抽象、概括的能力,為進一步學習同類項打下堅實的基礎。

  七年級數(shù)學上冊教案 5

  一、目標

  1.用它們拼成各種形狀不同的四邊形,并計算它們的周長。

  (鼓勵學生把長方形和等腰三角形拼和成各種圖形,分別計算出它們的周長和面積)

  2.教師揭示以上這些工作實際上是在進行整式的加減運算

  3.回顧以上過程 思考:整式的加減運算要進行哪些工作?

  生1:“去括號”

  生2:“合并同類項”

  師生小結:整式的.加減實際上是“去括號”和“合并同類項”法則的綜合應用,

  二、揭示如何進行整式的加減運算

  1.進行整式的加減運算時,如果有括號先去括號,再合并同類項。

  2.教學例二 例2 求2a2-4a+1與-3a2+2a-5的差.

  (本題首先帶領學生根據(jù)題意列出式子,強調要把兩個代數(shù)式看成整體,列式時應加上括號)

  解:(2a2-4a+1)-(-3a2+2a-5)

  =2a2-4a+1+3a2-2a+5

  =5a2-6a+6

  3.拓展練習

 。1)求多項式2x -3 +7與6x -5 -2的和.

  提問:你有哪些計算方法?(可引導學生進行豎式計算,并在練習中注意豎式計算過程中需要注意什么?)

  (2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)

 。4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)

  4.教學例3

  先化簡下式,再求值:

 。ㄗ龃祟愵}目應先與學生一起探討一般步驟:

  (1)去括號。

 。2)合并同類項。

 。3)代值)

  解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3

  =15a2b –5ab2+4ab2 -12a2b)

  =3a2b –ab2

  三、小結

  1.進行整式的加減運算時,如果有括號先去括號,再合并同類項。

  2.進行化簡求值計算時

  (1)去括號。

 。2)合并同類項。

 。3)代值

  3.通過本節(jié)課的學習你還有哪些疑問?

  四、布置作業(yè)

  習題4.5 2. (3) ;4. (2);5.。

  五、課后反思

  省略

  七年級數(shù)學上冊教案 6

  教學目標:

  1.通過對“零”的意義的探討,進一步理解正數(shù)和負數(shù)的概念,能利用正負數(shù)正確表示具有相反意義的量(規(guī)定了向指定方向變化的量);

  2.進一步體驗正負數(shù)在生產(chǎn)生活中的廣泛應用,提高解決實際問題的能力.

  教學重點:

  深化對正負數(shù)概念的理解.

  教學難點:

  正確理解和表示向指定方向變化的量.

  教與學互動設計:

  (一)知識回顧和理解

  通過對上節(jié)課的學習,我們知道在實際生產(chǎn)和生活中存在著具有兩種不同意義的量,為了區(qū)分它們,我們用正數(shù)和負數(shù)來分別表示它們.

  [問題1]:“零”為什么既不是正數(shù)也不是負數(shù)呢?

  學生思考討論,借助舉例說明.

  參考例子:用正數(shù)、負數(shù)和零表示零上溫度、零下溫度和零度.

  思考“0”在實際問題中有什么意義?

  歸納“0”在實際問題中不僅表示“沒有”的意思,它還具有一定的實際意義.

  如:水位不升不降時的水位變化,記作:0 m.

  [問題2]:引入負數(shù)后,數(shù)按照“具有兩種相反意義的量”來分,可以分成幾類?分別是什么?

  (二)深化理解,解決問題

  [問題3]:(課本P3例題)

  【例1】(1)一個月內,小明體重增加2 kg,小華體重減少1kg,小強體重無變化,寫出他們這個月的體重增長值;

  【例2】(2)某年,下列國家的商品進出口總額比上年的變化情況是:

  美國減少6.4%,德國增長1.3%,

  法國減少2.4%,英國減少3.5%,

  意大利增長0.2%,中國增長7.5%.

  寫出這些國家這一年商品進出口總額的增長率.

  解后語:在同一個問題中,分別用正數(shù)和負數(shù)表示的量具有相反的意義.寫出體重的增長值和進出口的增長率就暗示著用正數(shù)來表示增長的量.類似的還有水位上升、收入上漲等等.我們要在解決問題時注意體會這些指明方向的量,正確地用正負數(shù)表示它們.

  鞏固練習

  1.通過例題(2)提醒學生審題時要注意要求,題中求的是增長率,不是增長值.

  2.讓學生再舉出一些常見的具有相反意義的量.

  3.1990~1995年下列國家年平均森林面積(單位:千米2)的變化情況是:

  中國減少866,印度增長72,

  韓國減少130,新西蘭增長434,

  泰國減少3247,孟加拉減少88.

  (1)用正數(shù)和負數(shù)表示這六國1990~1995年平均森林面積的增長量;

  (2)如何表示森林面積減少量,所得結果與增長量有什么關系?

  (3)哪個國家森林面積減少最多?

  (4)通過對這些數(shù)據(jù)的分析,你想到了什么?

  閱讀與思考

  (課本P6)用正數(shù)和負數(shù)表示加工允許誤差.

  問題:1.直徑為30.032 mm和直徑為29.97 mm的零件是否合格?

  2.你知道還有哪些事件可以用正負數(shù)表示允許誤差嗎?請舉例.

  (三)應用遷移,鞏固提高

  1.甲冷庫的溫度是-12℃,乙冷庫的`溫度比甲冷庫低5 ℃,則乙冷庫的溫度是.

  2.一種零件的內徑尺寸在圖紙上是9±0.05(單位:mm),表示這種零件的標準尺寸是9 mm,加工要求不超過標準尺寸多少?最小不小于標準尺寸多少?

  3.摩托車廠本周計劃每天生產(chǎn)250輛摩托車,由于工人實行輪休,每天上班的人數(shù)不一定相等,實際每天生產(chǎn)量(與計劃量相比)的增減值如下表:

  星期一二三四

  增減-5 +7 -3 +4

  根據(jù)上面的記錄,問:哪幾天生產(chǎn)的摩托車比計劃量多?星期幾生產(chǎn)的摩托車最多,是多少輛?星期幾生產(chǎn)的摩托車最少,是多少輛?

  類比例題,要求學生注意書寫格式,體會正負數(shù)的應用.

  (四)課時小結(師生共同完成)

  七年級數(shù)學上冊教案 7

  【學習目標】

  1、通過觀察生活中的大量圖片或實物,經(jīng)歷把實物抽象成幾何圖形的過程;

  2、能由實物形狀想象出幾何圖形,由幾何圖形想象出實物形狀;

  3、能識別一些簡單幾何體,正確區(qū)分平面圖形與立體圖形。

  【重點難點】

  識別簡單的幾何體是重點;從具體事物中抽象出幾何圖形是難點。

  【導學指導】

  一、知識鏈接

  同學們,你仔細觀察過我們生活的世界嗎?從城市宏偉的建筑到鄉(xiāng)村簡樸的住宅,從四通八達的立交橋到街頭巷尾的交通標志,從古老的剪紙藝術到現(xiàn)代化的城市雕塑,從自然界形態(tài)各異的動物到北京的申奧標志……,包含著形態(tài)各異的圖形。圖形的世界是豐富多彩的!那就讓我們走進圖象的世界去看看吧。

  二、自主探究

  1、幾何圖形

 。1)仔細觀察圖4、1—1,讓同學們感受是豐富多彩的圖形世界;

 。2)出示一個長方體的紙盒,讓同學們觀察圖4、1—2回答問題:

  從整體上看,它的形狀是什么?從不同側面看,你看到了什么圖形?只看棱、頂點等局部,你又看到了什么?

  我們見過的長方體、圓柱、圓錐、球、圓、線段、點,以及小學學習過的三角形、四邊形等,都是從形形色色的物體外形中得出的。我們把這些圖形稱為幾何圖形。

  注意:當我們關注物體的形狀、大小和位置時,得出了幾何圖形,它是數(shù)學研究的主要對象之一,而物體的顏色、重量、材料等則是其它學科所關注的。

  2、立體圖形

  思考第117頁思考題并出示實物(如茶葉、地球儀、字典及魔方等)及多媒體演示(如谷堆、帳篷、金字塔等),它們與我們學過的哪些圖形相類似?

  長方體、正方體、球、圓柱、圓錐等它們各部分不都在同一平面內,它們是立體圖形。

  想一想

  生活中還有哪些物體的形狀類似于這些立體圖形呢?

  思考:課本118頁圖4、1—4中實物的形狀對應哪些立體圖形?把相應的實物與圖形用線連起來。

  3、平面圖形

  平面圖形的`概念

  線段、角、三角形、長方形、圓等它們的各部分都在同一平面內,它們是平面圖形。

  思考:課本118頁圖4、1—5的圖中包含哪些簡單的平面圖形?

  請再舉出一些平面圖形的例子。

  長方形、圓、正方形、三角形、……。

  思考:立體圖形與平面圖形是兩類不同的幾何圖形,它們的區(qū)別在哪里?它們有什么聯(lián)系?

  立體圖形的各部分不都在同一平面內,而平面圖形的各部分都在同一平面內;

  立體圖形中某些部分是平面圖形。

  《4、1、2點、線、面、體》同步四維訓練

  知識點一:幾何體的構成

  1、下列結論正確的是(C)

 、賵A柱由3個面圍成,這3個面都是平面;

 、趫A錐由2個面圍成,這2個面中,1個是平面,1個是曲面;

 、矍騼H由1個面圍成,這個面是平面;

 、苷襟w由6個面圍成,這6個面都是平面、

  A、①②B、②③C、②④D、①④

  《4、1、2點、線、面、體》同步練習含解析

  一、單選題(共12題;共24分)

  1、圓錐體是由下列哪個圖形繞自身的對稱軸旋轉一周得到的

  A、正方形

  B、等腰三角形

  C、圓

  D、等腰梯形

  2、下面現(xiàn)象能說明“面動成體”的是

  A、旋轉一扇門,門運動的痕跡

  B、扔一塊小石子,小石子在空中飛行的路線

  C、天空劃過一道流星

  D、時鐘秒針旋轉時掃過的痕跡

  3、下列說法中,正確的是

  A、棱柱的側面可以是三角形

  B、四棱錐由四個面組成的

  C、正方體的各條棱都相等

  D、長方形紙板繞它的一條邊旋轉1周可以形成棱柱

  七年級數(shù)學上冊教案 8

  一、教學目標

  知識與技能

  1.理解單項式及單項式系數(shù)、次數(shù)的概念。

  2.會準確迅速地確定一個單項式的系數(shù)和次數(shù)。

  過程與方法

  通過小組討論、合作學習等方式,經(jīng)歷概念的形成過程,培養(yǎng)學生自主探索知識和合作交流能力。

  情感態(tài)度與價值觀

  初步培養(yǎng)學生觀察、分析、抽象、概括等思維能力和應用意識。

  二、重點難點

  重點

  列單項式表示數(shù)量關系,單項式及其系數(shù)、次數(shù)的意義.

  難點

  列單項式表示數(shù)量關系.

  三、學情分析

  本節(jié)課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的`理解和掌握情況,將直接影響到后續(xù)學習。要注重分析,亦即在剖析單項式結構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數(shù)、次數(shù),為進一步學習新知做好鋪墊。

  四、教學過程設計

  問題設計師生活動設計意圖

  [活動1]

  舉世矚目的青藏鐵路于20xx年7月1日建成通車,實現(xiàn)了幾代中國人夢寐以求的愿望。青藏鐵路是世界上海拔最高、線路最長的高原鐵路。青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段。列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據(jù)這些數(shù)據(jù)回答問題:

  列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?

  提問:字母表示數(shù)有什么意義?

  學生獨立思考,嘗試解決

  解答:

  1002=200千米

  1003=300千米

  100t=100t千米

  我們用含字母t的式子100t表示路程。用字母表示數(shù)后,可以用含有字母的式子把數(shù)量關系簡明地表達出來,更適合一般規(guī)律的表達。

  從學生已有的數(shù)學經(jīng)驗和現(xiàn)實問題情境出發(fā),感受用字母表示數(shù)的意義。

  以青藏鐵路為引例,對學生進行愛國主義教育的德育滲透。

  七年級數(shù)學上冊教案 9

  【知識與技能】

  1.了解無理數(shù)和實數(shù)的概念,會將實數(shù)按一定的標準進行分類.

  2.知道實數(shù)與數(shù)軸上的點一一對應.

  【過程與方法】

  1.了解無理數(shù)和實數(shù)的概念,適時拓展數(shù)的觀念.

  2.通過學習“實數(shù)與數(shù)軸上的點的一一對應關系”,滲透“數(shù)形結合”思想.

  【情感態(tài)度】

  從分類、集合的思想中領悟數(shù)學的內涵,激發(fā)興趣.

  【教學重點】

  正確理解實數(shù)的概念.

  【教學難點】

  對“實數(shù)與數(shù)軸上的點一一對應關系”的理解.

  一、情境導入,初步認識

  問題請學生回憶有理數(shù)的分類,及與有理數(shù)相關的概念等.教師引導得出下列結論:任何一個有理數(shù)都可以寫成有限小數(shù)或無限循環(huán)小數(shù)的形式,如等.

  引導學生反向探討:任何一個有限小數(shù)或無限循環(huán)小數(shù)都能化成分數(shù)嗎?

  【教學說明】任何一個有限小數(shù)和一個無限循環(huán)小數(shù)都可以化成分數(shù),所以任何一個有限小數(shù)和一個無限循環(huán)小數(shù)都是有理數(shù).

  二、思考探究,獲取新知

  例1

  (1)試著寫出幾個無理數(shù).

  (2)判斷下列各數(shù)中,哪些是有理數(shù)?哪些是無理數(shù)?

  《實數(shù)》課時練習含答案

  1.(2015?安徽模擬)把幾個數(shù)用大括號圍起來,中間用逗號斷開,如:{1,2,3}、{﹣2,7,8,19},我們稱之為集合,其中的.數(shù)稱其為集合的元素.如果一個集合滿足:當實數(shù)a是集合的元素時,實數(shù)8﹣a也必是這個集合的元素,這樣的集合我們稱為好的集合.下列集合為好的集合的是( )

  A. {1,2} B. {1,4,7} C. {1,7,8} D. {﹣2,6}

  答案:B

  知識點:實數(shù).

  解析:根據(jù)題意,利用集合中的數(shù),進一步計算8﹣a的值即可.

  解:A、{1,2}不是好的集合,因為8﹣1=7,不是集合中的數(shù),故錯誤;

  B、{1,4,7}是好的集合,這是因為8﹣7=1,8﹣4=4,8﹣1=7,1、4、7都是{1、4、7}中的數(shù),正確;

  C、{1,7,8}不是好的集合,因為8﹣8=0,不是集合中的數(shù),故錯誤;

  D、{﹣2,6}不是好的集合,因為8﹣(﹣2)=10,不是集合中的數(shù),故錯誤;

  故選:B.

  本題考查了有理數(shù)的加減的應用,要讀懂題意,根據(jù)有理數(shù)的減法按照題中給出的判斷條件進行求解即可.

  《6.3實數(shù)》專項測試題

  1、下列說法正確的是( )

  A.單獨的一個數(shù)或一個字母也是代數(shù)式

  B.任何有理數(shù)的絕對值都是正數(shù)

  C.如果兩個數(shù)的絕對值相等,那么這兩個數(shù)相等

  D.數(shù)軸上的任意一個點都可以表示一個有理數(shù)

  【答案】A

  【解析】解:數(shù)軸上的點可表示為有理數(shù)和無理數(shù)。

  兩個數(shù)的絕對值相等,這兩個數(shù)相等或者互為相反數(shù)。

  絕對值是()。

  2、下列說法正確是(   )

  A不存在最小的實數(shù)B有理數(shù)是有限小數(shù)

  C無限小數(shù)都是無理數(shù)D帶根號的數(shù)都是無理數(shù)

  七年級數(shù)學上冊教案 10

  一、素質教育目標

  (一)知識教學點

  使學生會根據(jù)一個銳角的正弦值和余弦值,查出這個銳角的大小。

  (二)能力訓練點

  逐步培養(yǎng)學生觀察、比較、分析、概括等邏輯思維能力。

  (三)德育滲透點

  培養(yǎng)學生良好的學習習慣。

  二、教學重點、難點和疑點

  1、重點:由銳角的正弦值或余弦值,查出這個銳角的大小。

  2、難點:由銳角的正弦值或余弦值,查出這個銳角的大小。

  3、疑點:由于余弦是減函數(shù),查表時“值增角減,值減角增”學生常常出錯。

  三、教學步驟

  (一)明確目標

  1、銳角的正弦值與余弦值隨角度變化的規(guī)律是什么?

  這一規(guī)律也是本課查表的依據(jù),因此課前還得引導學生回憶。

  答:當角度在0°~90°間變化時,正弦值隨著角度的增大(或減小)而增大(或減小);當角度在0°~90°間變化時,余弦值隨角度的增大(或減小)而減小(或增大)。

  2、若cos21°30′=0.9304,且表中同一行的修正值是則cos21°31′=______,cos21°28′=______。

  3、不查表,比較大。

  (1)sin20°______sin20°15′;

  (2)cos51°______cos50°10′;

  (3)sin21°______cos68°。

  學生在回答2題時極易出錯,教師一定要引導學生敘述思考過程,然后得出答案。

  3題的設計主要是考察學生對函數(shù)值隨角度的變化規(guī)律的理解,同時培養(yǎng)學生估算。

  (二)整體感知

  已知一個銳角,我們可用“正弦和余弦表”查出這個角的正弦值或余弦值。反過來,已知一個銳角的正弦值或余弦值,可用“正弦和余弦表”查出這個角的大小。因為學生有查“平方表”、“立方表”等經(jīng)驗,對這一點必深信無疑。而且通過逆向思維,可能很快會掌握已知函數(shù)值求角的方法。

  (三)重點、難點的學習與目標完成過程。

  例8已知sinA=0.2974,求銳角A。

  學生通過上節(jié)課已知銳角查其正弦值和余弦值的經(jīng)驗,完全能獨立查得銳角A,但教師應請同學講解查的過程:從正弦表中找出0.2974,由這個數(shù)所在行向左查得17°,由同一數(shù)所在列向上查得18′,即0.2974=sin17°18′,以培養(yǎng)學生語言表達能力。

  解:查表得sin17°18′=0.2974,所以

  銳角A=17°18′。

  例9已知cosA=0.7857,求銳角A。

  分析:學生在表中找不到0.7857,這時部分學生可能束手無策,但有上節(jié)課查表的經(jīng)驗,少數(shù)思維較活躍的學生可能會想出辦法。這時教師讓學生討論,在探討中尋求辦法。這對解決本題會有好處,使學生印象更深,理解更透徹。

  若條件許可,應在討論后請一名學生講解查表過程:在余弦表中查不到0.7857。但能找到同它最接近的數(shù)0.7859,由這個數(shù)所在行向右查得38°,由同一個數(shù)向下查得12′,即0.7859=cos38°12′。但cosA=0.7857,比0.7859小0.0002,這說明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002對應的角度是1′,所以∠A=38°12′+1′=38°13′。

  解:查表得cos38°12′=0.7859,所以:

  0.7859=cos38°12′。

  值減0.0002角度增1′

  0.7857=cos38°13′,即銳角A=38°13′。

  例10已知cosB=0.4511,求銳角B。

  例10與例9相比較,只是出現(xiàn)余差(本例中的.0.0002)與修正值不一致。教師只要講清如何使用修正值(用最接近的值),以使誤差最小即可,其余部分學生在例9的基礎上,可以獨立完成。

  解:0.4509=cos63°12′

  值增0.0003角度減1′

  0.4512=cos63°11′

  ∴銳角B=63°11′

  為了對例題加以鞏固,教師在此應設計練習題,教材P。15中2、3。

  2、已知下列正弦值或余弦值,求銳角A或B:

  (1)sinA=0.7083,sinB=0.9371,sinA=0.3526,sinB=0.5688;

  (2)cosA=0.8290,cosB=0.7611,cosA=0.2996,cosB=0.9931。

  此題是配合例題而設置的,要求學生能快速準確得到答案。

  (1)45°6′,69°34′,20°39′,34°40′;

  (2)34°0′,40°26′,72°34′,6°44′。

  3、查表求sin57°與cos33°,所得的值有什么關系?

  此題是讓學生通過查表進一步印證關系式sinA=cos(90°-A),cosA=0.8387,∴sin57°=cos33°,或sin57°=cos(90°-57°),cos33°=sin(90°-33°)。

  (四)總結、擴展

  本節(jié)課我們重點學習了已知一個銳角的正弦值或余弦值,可用“正弦和余弦表”查出這個銳角的大小,這也是本課難點,同學們要會依據(jù)正弦值和余弦值隨角度變化規(guī)律(角度變化范圍0°~90°)查“正弦和余弦表”。

  四、布置作業(yè)

  教材復習題十四A組3、4,要求學生只查正、余弦。

  五、板書設計

  14.1正弦和余弦(五)

  例8例9例10

  七年級數(shù)學上冊教案 11

  一.知識與技能

  能判斷一個數(shù)是正數(shù)還是負數(shù),能用正數(shù)或負數(shù)表示生活中具有相反意義的量.

  二.過程與方法

  借助生活中的實例理解有理數(shù)的意義,體會負數(shù)引入的必要性和有理數(shù)應用的廣泛性.

  三.情感態(tài)度與價值觀

  培養(yǎng)學生積極思考,合作交流的意識和能力.

  教學重、難點與關鍵

  1.重點:正確理解負數(shù)的意義,掌握判斷一個數(shù)是正數(shù)還是負數(shù)的方法.

  2.難點:正確理解負數(shù)的概念.

  3.關鍵:創(chuàng)設情境,充分利用學生身邊熟悉的事物,加深對負數(shù)意義的理解.

  教具準備

  投影儀.

  教學過程

  四.課堂引入

  我們知道,數(shù)是人們在實際生活和生活需要中產(chǎn)生,并不斷擴充的人們由記數(shù)、排序、產(chǎn)生數(shù)1,2,3,…;為了表示“沒有物體”、“空位”引進了數(shù)“0”,測量和分配有時不能得到整數(shù)的結果,為此產(chǎn)生了分數(shù)和小數(shù).

  在生活、生產(chǎn)、科研中經(jīng)常遇到數(shù)的表示與數(shù)的'運算的問題,例如課本第2頁至第3頁中提到的四個問題,這里出現(xiàn)的新數(shù):-3,-2,-2.7%在前面的實際問題中它們分別表示:零下3攝氏度,凈輸2球,減少2.7%.

  五.講授新課

  (1)、像-3,-2,-2.7%這樣的數(shù)(即在以前學過的0以外的數(shù)前面加上負號“-”的數(shù))叫做負數(shù).而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,它們與負數(shù)具有相反的意義,我們把這樣的數(shù)(即以前學過的0以外的數(shù))叫做正數(shù),有時在正數(shù)前面也加上“+”(正)號,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一個數(shù)前面的“+”、“-”號叫做它的符號,這種符號叫做性質符號.

  (2)、中國古代用算籌(表示數(shù)的工具)進行計算,紅色算籌表示正數(shù),黑色算籌表示負數(shù).

  (3)、數(shù)0既不是正數(shù),也不是負數(shù),但0是正數(shù)與負數(shù)的分界數(shù).

  (4) 、0可以表示沒有,還可以表示一個確定的量,如今天氣溫是0℃,是指一個確定的溫度;海拔0表示海平面的平均高度.

  用正負數(shù)表示具有相反意義的量

  (5)、 把0以外的數(shù)分為正數(shù)和負數(shù),起源于表示兩種相反意義的量.正數(shù)和負數(shù)在許多方面被廣泛地應用.在地形圖上表示某地高度時,需要以海平面為基準,通常用正數(shù)表示高于海平面的某地的海拔高度,負數(shù)表示低于海平面的某地的海拔高度.例如:珠穆朗瑪峰的海拔高度為8844m,吐魯番盆地的海拔高度為-155m.記錄賬目時,通常用正數(shù)表示收入款額,負數(shù)表示支出款額.

  (6)、 請學生解釋課本中圖1.1-2,圖1.1-3中的正數(shù)和負數(shù)的含義.

  (7)、 你能再舉一些用正負數(shù)表示數(shù)量的實際例子嗎?

  (8)、例如,通常用正數(shù)表示汽車向東行駛的路程,用負數(shù)表示汽車向西行駛的路程;用正數(shù)表示水位升高的高度,用負數(shù)表示水位下降的高度;用正數(shù)表示買進東西的數(shù)量,用負數(shù)表示賣出東西的數(shù)量.

  六.鞏固練習

  課本第3頁,練習1、2、3、4題.

  七.課堂小結

  為了表示現(xiàn)實生活中的具有相反意義的量,我們引進了負數(shù).正數(shù)就是我們過去學過的數(shù)(除0外),在正數(shù)前放上“-”號,就是負數(shù),但不能說:“帶正號的數(shù)是正數(shù),帶負號的數(shù)是負數(shù)”,在一個數(shù)前面添上負號,它表示的是原數(shù)意義相反的數(shù).如果原數(shù)是一個負數(shù),那么前面放上“-”號后所表示的數(shù)反而是正數(shù)了,另外應注意“0”既不是正數(shù),也不是負數(shù).

  七年級數(shù)學上冊教案 12

  教學目標

  1. 使學生在了解代數(shù)式概念的基礎上,能把簡單的與數(shù)量有關的詞語用代數(shù)式表示出來;

  2. 初步培養(yǎng)學生觀察、分析和抽象思維的能力.

  教學重點和難點

  重點:列代數(shù)式.

  難點:弄清楚語句中各數(shù)量的意義及相互關系.

  課堂教學過程設計

  一、從學生原有的認知結構提出問題

  1?用代數(shù)式表示乙數(shù):(投影)

  (1)乙數(shù)比x大5;(x+5)

  (2)乙數(shù)比x的2倍小3;(2x-3)

  (3)乙數(shù)比x的倒數(shù)小7;( -7)

  (4)乙數(shù)比x大16%?((1+16%)x)

  (應用引導的方法啟發(fā)學生解答本題)

  2?在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計算關系式,列成代數(shù)式,正如上面的練習中的問題一樣,這一點同學們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字敘述的一句話或計算關系式(即日常生活語言)列成代數(shù)式?本節(jié)課我們就來一起學習這個問題?

  二、講授新課

  例1 用代數(shù)式表示乙數(shù):

  (1)乙數(shù)比甲數(shù)大5; (2)乙數(shù)比甲數(shù)的2倍小3;

  (3)乙數(shù)比甲數(shù)的倒數(shù)小7; (4)乙數(shù)比甲數(shù)大16%?

  分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設出來,才能解決欲求的乙數(shù)?

  解:設甲數(shù)為x,則乙數(shù)的代數(shù)式為

  (1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?

  (本題應由學生口答,教師板書完成)

  最后,教師需指出:第4小題的答案也可寫成x+16%x?

  例2 用代數(shù)式表示:

  (1)甲乙兩數(shù)和的2倍;

  (2)甲數(shù)的 與乙數(shù)的 的差;

  (3)甲乙兩數(shù)的平方和;

  (4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;

  (5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?

  分析:本題應首先把甲乙兩數(shù)具體設出來,然后依條件寫出代數(shù)式?

  解:設甲數(shù)為a,乙數(shù)為b,則

  (1)2(a+b); (2) a- b; (3)a2+b2;

  (4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?

  (本題應由學生口答,教師板書完成)

  此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的.句子里應特別注意其運算順序?

  例3 用代數(shù)式表示:

  (1)被3整除得n的數(shù);

  (2)被5除商m余2的數(shù)?

  分析本題時,可提出以下問題:

  (1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?

  (2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?

  解:(1)3n; (2)5m+2?

  (這個例子直接為以后讓學生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準備)?

  例4 設字母a表示一個數(shù),用代數(shù)式表示:

  (1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的 ;

  (3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的 的和?

  分析:啟發(fā)學生,做分析練習?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?

  解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?

  (通過本例的講解,應使學生逐步掌握把較復雜的數(shù)量關系分解為幾個基本的數(shù)量關系,培養(yǎng)學生分析問題和解決問題的能力?)

  例5 設教室里座位的行數(shù)是m,用代數(shù)式表示:

  (1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?

  (2)教室里座位的行數(shù)是每行座位數(shù)的 ,教室里總共有多少個座位?

  分析本題時,可提出如下問題:

  (1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

  (2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

  (3)通過上述問題的解答結果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))

  解:(1)m(m+6)個; (2)( m)m個?

  三、課堂練習

  1?設甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)

  (1)甲數(shù)的2倍,與乙數(shù)的 的和; (2)甲數(shù)的 與乙數(shù)的3倍的差;

  (3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商?

  2?用代數(shù)式表示:

  (1)比a與b的和小3的數(shù); (2)比a與b的差的一半大1的數(shù);

  (3)比a除以b的商的3倍大8的數(shù); (4)比a除b的商的3倍大8的數(shù)?

  3?用代數(shù)式表示:

  (1)與a-1的和是25的數(shù); (2)與2b+1的積是9的數(shù);

  (3)與2x2的差是x的數(shù); (4)除以(y+3)的商是y的數(shù)?

  〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕

  四、師生共同小結

  首先,請學生回答:

  1?怎樣列代數(shù)式?2?列代數(shù)式的關鍵是什么?

  其次,教師在學生回答上述問題的基礎上,指出:對于較復雜的數(shù)量關系,應按下述規(guī)律列代數(shù)式:

  (1)列代數(shù)式,要以不改變原題敘述的數(shù)量關系為準(代數(shù)式的形式不唯一);

  (2)要善于把較復雜的數(shù)量關系,分解成幾個基本的數(shù)量關系;

  (3)把用日常生活語言敘述的數(shù)量關系,列成代數(shù)式,是為今后學習列方程解應用題做準備?要求學生一定要牢固掌握?

  五、作業(yè)

  1?用代數(shù)式表示:

  (1)體校里男生人數(shù)占學生總數(shù)的60%,女生人數(shù)是a,學生總數(shù)是多少?

  (2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學生人數(shù)之比是1∶10,教練人數(shù)是多?

  2?已知一個長方形的周長是24厘米,一邊是a厘米,

  求:(1)這個長方形另一邊的長;(2)這個長方形的面積.

  學法探究

  已知圓環(huán)內直徑為acm,外直徑為bcm,將100個這樣的圓環(huán)一個接著一個環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?

  分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看 有沒有規(guī)律.

  當圓環(huán)為三個的時候,如圖:

  此時鏈長為,這個結論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:

  解:

  =99a+b(cm)

  七年級數(shù)學上冊教案 13

  【教學目標】

  引導學生通過常規(guī)分析,得出解題思路,經(jīng)歷提出問題,自探問題,應用知識的過程,自主總結出解題辦法;

  【教學難點】

  找出題目中的可有可無的已知條件,說一說為什么可以這樣認為

  【教學過程】

  問:以前學過的有關路程,時間,和速度之間的關系是怎么樣的?你能寫出它們之間的關系嗎?

  出示例題:甲、乙兩地公路全長352千米。汽車原來從甲地到乙地要11小時,建成高速公路后,汽車每小時速度是原來的2.5倍,F(xiàn)在汽車從甲地到乙地需要多少小時?

  分析:要求現(xiàn)在汽車從甲地到乙地需要多少小時,那么先要求出汽車現(xiàn)在的速度,而汽車現(xiàn)在的速度是原來的2.5倍,那么還得先求出汽車原來的速度。根據(jù)`甲乙兩地公路全長352千米。汽車原來從甲地到乙要11小時,可以求出汽車原來的速度。

  學生寫出解答過程:汽車原來的速度:352÷1=32(千米); 汽車現(xiàn)在的速度:32×2.5=80(千米)

  現(xiàn)在的時間:352÷80=4.4(小時)

  問:用比例的思路該怎么樣理解這道題目呢?

  分析:甲、乙兩地的公路長度一定,汽車的速度和所需的時間成反比例。因為現(xiàn)在的速度是原來的2.5倍,所以原來的時間是現(xiàn)在的

  2.5倍。即:11÷2.5=4.4(小時)。

  這樣解答使得`甲乙兩地公路全長352千米成了多余條件,但是又不影響解答問題。

  【我們來探索】

  一批零件有240個,王師傅單獨做需要6小時,李師傅的.工作效率是王師傅的1.5倍,那么如果讓李師傅單獨做這批零件,需要幾小時?

  【總結】

  在解答應用題時要善于應用不同的思路和技巧,巧解問題

  【作業(yè)】

  丁阿姨打一份稿件需4小時,王阿姨的速度是丁阿姨的,那么如果由王阿姨打這份稿件,需要幾小時?

  丁阿姨打一份稿件需要4小時,王阿姨的速度與丁阿姨的速度比是4:5,那么如果由王阿姨打這份稿件,需要幾小時?

  七年級數(shù)學上冊教案 14

  一、素質教育目標

 。ㄒ唬┲R教學點

  1.使學生理解近似數(shù)和有效數(shù)字的意義

  2.給一個近似數(shù),能說出它精確到哪一痊,它有幾個有效數(shù)字

  3.使學生了解近似數(shù)和有效數(shù)字是在實踐中產(chǎn)生的.

 。ǘ┠芰τ柧汓c

  通過說出一個近似數(shù)的精確度和有效數(shù)字,培養(yǎng)學生把握關鍵字詞,準確理解概念的能力.

 。ㄈ┑掠凉B透點

  通過近似數(shù)的學習,向學生滲透具體問題具體分析的辯證唯物主義思想

 。ㄋ模┟烙凉B透點

  由于實際生活中有時要把結果搞得準確是辦不到的或沒有必要,所以近似數(shù)應運而生,近似數(shù)和準確數(shù)給人以美的享受.

  二、學法引導

  1.教學方法:從實際問題出發(fā),啟發(fā)引導,充分體現(xiàn)學生為主全,注重學生參與意識

  2.學生學法,從身邊找出應用近似數(shù),準確數(shù)的例子→近似數(shù)概念→鞏固練習

  三、重點、難點、疑點及解決辦法

  1.重點:理解近似數(shù)的精確度和有效數(shù)字

  2.難點:正確把握一個近似數(shù)的精確度及它的有效數(shù)字的個數(shù)

  3.疑點:用科學記數(shù)法表示的近似數(shù)的精確度和有效數(shù)字的個數(shù)

  四、課時安排

  1課時

  五、教具學具準備

  投影儀,自制膠片

  六、師生互動活動設計

  教者提出生活中應用準確數(shù)和近似數(shù)的.例子,學生討論回答,學生自己找出類似的例子,教者提出精確度和有效數(shù)字的概念,教者提出近似數(shù)的有關問題,學生討論解決。

  七、教學步驟

 。ㄒ唬┨岢鰡栴},創(chuàng)設情境

  師:有10千克蘋果,平均分給3個人,應該怎樣分?

  生:平均每人千克

  師:給你一架天平,你能準確地稱出每人所得蘋果的千克數(shù)嗎?

  生:不能

  師:哪怎么分

  生:取近似值

  師:板書課題

  【教法說明】通過提出實際問題,使學生認識到研究近似數(shù)是必須的,是自然的,從而提高學生近似數(shù)的積極性

 。ǘ┨剿餍轮,講授新課

  師出示投影1

  下列實際問題中出現(xiàn)的數(shù),哪些是精確數(shù),哪些是近似數(shù)

 。1)初一(1)有55名同學

 。2)地球的半徑約為6370千米

  (3)中華人民共和國現(xiàn)在有31個省級行政單位

 。4)小明的身高接近1.6米

  學生活動:回答上述問題后,自己找出生活中應用準確數(shù)和近似數(shù)的例子

  師:我們在解決實際問題時,有許多時候只能用近似數(shù)你知道為什么嗎?

  啟發(fā)學生得出兩方面原因:

  1.搞得完全準確有時是辦不到的

  2.往往也沒有必要搞得完全準確

  以開始提出的問題為例,揭示近似數(shù)的有關概念

  板書:

  1.精確度

  2.有效數(shù)字:一般地,一個近似數(shù),四舍五入到哪一位,就說這個數(shù)精確到哪一位,這時,從左邊第一個不是0的數(shù)字起,到精確的數(shù)位止,所有的數(shù)字,都叫做這個數(shù)的有效數(shù)字

  例如:3.3有二個有效數(shù)字

  3.33有三個有效數(shù)字

  討論:近似數(shù)0.038有幾個有效數(shù)字,0.03080呢?

  【教法說明】通過討論學生明確近似數(shù)的有效數(shù)字需注意的兩點:一是從左邊第一個不是零的數(shù)起;二是從左邊第一個不是零的數(shù)起,到精確的位數(shù)止,所有的數(shù)字,教者在有效數(shù)字概念對應的文字底下畫上波浪線,標上①、②

  例1.(出示投影2)

  下列由四舍五入吸到近似數(shù),各精確到哪一位,各有哪幾個有效數(shù)字?

 。1)43.8(2).03086(3)2.4萬

  學生口述解題過程,教者板書

  對于近似數(shù)2.4萬學生又能認為是精確到十分位,這時可組織學生討論近似數(shù)與5.4和近似數(shù)5.4萬中的兩個4的數(shù)位有什么不同,從而得出正確的答案.

  【教法說明】對于疑點問題,通過啟發(fā)討論,適時點撥,遠比教者直接告訴正確答案,理解深刻得多

  鞏固練習見課本122頁練習2、3頁

  例2(出示投影3)

  下列由四舍五入得來的近似數(shù),各精確到哪一位,各有幾個有效數(shù)字?

  七年級數(shù)學上冊教案 15

  教學目標

  知識與能力

  從簡單的轉盤游戲開始,使學生在生活經(jīng)驗和試驗的基礎上,進一步體驗不確定事件的特點及事件發(fā)生的可能性大小。

  教學思考

  能用實驗對數(shù)學猜想做出檢驗,從而增加猜想的可信度。 解決問題

  在轉盤游戲過程中,經(jīng)歷猜測結果,實驗驗證,分析試驗結果等數(shù)學活動,增加數(shù)學活動經(jīng)驗。

  情感態(tài)度與價值觀

  在合作與交流過程中,體驗小組合作更有利于探究數(shù)學知識,敢于發(fā)表自己觀點,提高個人認識。

  教學重點難點:

  在實驗中,體會不確定事件的特點及事件發(fā)生可能性大。皇姑總學生都能積極認真參與課堂設計中的實驗,真正在實驗中獲得知識上的認識。

  教學過程

  創(chuàng)設情境,切入標題

  同學們,商場經(jīng)常利用轉盤游戲進行抽獎,你認為顧客們的中獎可能性有多大呢?這節(jié)課我們就來探究一下有關轉盤游戲的問題。 新課探究

  請同學們猜測,當我自由轉動轉盤時,指針會落在什么顏域呢?

  請各小組分別派一名代表,看哪組能轉出紅色。

  結果,8小組有6組轉出了紅色。

  為什么會出現(xiàn)這樣的結果呢?

  因為,在這個轉盤中,紅域的面積大,白域的面積小,因此,當轉盤停上轉動時,指針落到紅域的可能性大。

  大家同意這種看法嗎?下面我們親自動手感受一下。

  學生按照題目要求進行實驗。

  請各組組長把你組的實驗數(shù)據(jù)匯報一下(教師把數(shù)據(jù)填寫在表格里) 實驗結果:六個小組每組實驗16次,全班共實驗96次,指針落在紅域的次數(shù)分別如下9,6,10,5,8,12。共計50次。

  請同學們對我們的實驗結果進行分析交流,談談你在試驗中有哪些心得。

  根據(jù)觀察,轉盤上紅域的面積為總面積的一半,指針落在紅域的可能性也應該是一半。通過對我們全班的實驗結果分析,指針落在紅域的比例是50∶96,結果接近百分之五十。

  在小組內實驗結果不明顯,實驗次數(shù)越多越能說明問題。

  通過實驗,我們確定感受到,轉盤游戲中各區(qū)域的面積的可能性大小與指針落在什么區(qū)域的.可能性大小有直接關系。以后在生活中再遇到轉盤游戲問題可要想想今天的實驗結論。

  游戲與交流

  下面我們利用轉盤做一下數(shù)學游戲(出示幻燈片),學生按教學設計中要求進行游戲,教師巡回指導。

  每組每人游戲一次,全班共游戲48次。其游戲結果是,平均數(shù)增大1的,共35次,平均數(shù)減小1的,共13次。

  請同學們對下列問題進行交流(幻燈片出示教材206頁4個問題)。 這個轉盤轉到“平均數(shù)增大1”區(qū)域的可能性大,從面積大小就可以看出。

  如果平均數(shù)增大1,我是在卡片上增加一個數(shù),這個數(shù)等于卡片上數(shù)字的個數(shù)加1,如果是平均數(shù)減小1,我就在每個數(shù)上都減去1。

  同學們說出很多種方法,不一一列舉。

  “平均數(shù)增大1”的次數(shù)占總次數(shù)的百分之七十三,“平均數(shù)減小1”占百分之二十七。

  如果將這個實驗繼續(xù)做下去,卡片上所有數(shù)的平均數(shù)會增大。

  同學們說的都很好,課后能不能自己也利用轉盤設計一個新的游戲,感興趣的同學可以在課下與我交流。

  以下過程同教學設計,略去。

  隨堂練習

  指導學生完成教材第206頁習題。

  課時小結

  學生可從各個方面加以小結。 布置作業(yè)

  仿照課堂游戲,自編一個新的游戲。 能否利用撲克牌設計本節(jié)轉盤游戲。

【七年級數(shù)學上冊教案】相關文章:

七年級數(shù)學上冊教案01-19

七年級上冊數(shù)學教案07-02

七年級數(shù)學上冊教案07-02

七年級數(shù)學上冊教案(優(yōu)選)08-27

七年級上冊數(shù)學教案優(yōu)秀02-01

實數(shù)人教版數(shù)學七年級上冊教案12-22

七年級上冊數(shù)學教案優(yōu)秀10-21

七年級上冊數(shù)學優(yōu)秀教案范文03-07

新人教版七年級數(shù)學上冊教案03-02

七年級上冊數(shù)學教案11篇02-15