毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

初一數(shù)學(xué)上冊的教案

時間:2024-06-10 10:43:52 數(shù)學(xué)教案 我要投稿

初一數(shù)學(xué)上冊的教案

  作為一位不辭辛勞的人民教師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,編寫教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。我們應(yīng)該怎么寫教案呢?以下是小編為大家整理的初一數(shù)學(xué)上冊的教案,歡迎閱讀,希望大家能夠喜歡。

初一數(shù)學(xué)上冊的教案

初一數(shù)學(xué)上冊的教案1

  教學(xué)目標(biāo):

  知識與技能:

  1.進(jìn)一步熟練掌握有理數(shù)加法的法則。

  2.掌握有理數(shù)加法的運算律,并能運用加法運算律簡化運算。

  過程與方法:

  啟發(fā)引導(dǎo)式教學(xué),能夠由特殊到一般、由一般到特殊,體會研究數(shù)學(xué)的一些基本方法。

  情感、態(tài)度與價值觀:

  1.培養(yǎng)學(xué)生的分類與歸納能力。

  2.強(qiáng)化學(xué)生的數(shù)形結(jié)合思想。

  3.提高學(xué)生的自學(xué)以及理解能力,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  教學(xué)重點:

加法運算律的靈活運用,解決實際問題。

  教學(xué)難點:

能運用加法運算律簡化運算,加法在實際中的應(yīng)用。

  教學(xué)方法:

采取啟發(fā)式教學(xué)法及情感教學(xué),引導(dǎo)學(xué)生主動思考,主動探索。用大量的實例讓學(xué)生得出規(guī)律。

  教學(xué)準(zhǔn)備:

  1.復(fù)習(xí)有理數(shù)的加法法則:

  (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  (2)異號兩數(shù)相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  (3)一個數(shù)同0相加,仍得這個數(shù)。

  2.口算:7+(-5) (-5)+(-4) (-10)+0 (-8)+8

  教學(xué)過程:

  (一)情境引入,提出問題:

  鼓勵學(xué)生通過自己的探索,交流、歸納,自主得出有理數(shù)加法的運算律。

  1.敘述有理數(shù)的加法法則.

  2.小學(xué)學(xué)過的加法的運算律是不是也可以擴(kuò)充到有理數(shù)范圍?

  3.計算下列各組數(shù)的值,并觀察尋找規(guī)律。

  (1) (-7)+(-5) (-5)+(-7)

  (2) [8+(-5)]+(-4) 8+[(-5)+(-4)]

  (3) [(-7)+(-10)]+(-11); (-7)+[(-10)+(-11)]

  結(jié)論:在有理數(shù)運算中,加法交換律、結(jié)合律仍然成立。

  (二)活動探究,猜想結(jié)論:

  交換律——兩個有理數(shù)相加,交換加數(shù)的位置,和不變.

  用代數(shù)式表示:a+b=b+a

  運算律式子中的字母a、b表示任意的一個有理數(shù),可以是正數(shù),也可以是負(fù)數(shù)或者零.

  在同一個式子中,同一個字母表示同一個數(shù).

  結(jié)合律——三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變.

  用代數(shù)式表示:(a+b)+c=a+(b+c)

  這里a、b、c表示任意三個有理數(shù).

  (三)驗證結(jié)論:

  例1計算16+(-25)+24+(-32)

  (引導(dǎo)學(xué)生發(fā)現(xiàn),在本例中,把正數(shù)與負(fù)數(shù)分別結(jié)合在一起再相加,計算就比較簡便)

  解:16+(-25)+24+(-32)

  =[16+24]+[(-25)+(-32)] (加法結(jié)合律)

  =40+(-57) (同號相加法則)

  =-17 (異號相加法則)

  例2計算:31+(-28)+28+69

  (引導(dǎo)學(xué)生發(fā)現(xiàn),在本例中,把互為相反數(shù)的兩個數(shù)相加得0,計算比較簡便)

  解:31+(-28)+28+69

  =31+69+[(-28)+28]

  =100+0

  =100

  《2.4.1有理數(shù)的加法法則》同步練習(xí)

  3.若兩個有理數(shù)的和為負(fù)數(shù),那么這兩個有理數(shù)(  )

  A.一定都是負(fù)數(shù)B.一正一負(fù),且負(fù)數(shù)的絕對值大

  C.一個為零,另一個為負(fù)數(shù)D.至少有一個是負(fù)數(shù)

  4.兩個有理數(shù)的`和(  )

  A.一定大于其中的一個加數(shù)

  B.一定小于其中的一個加數(shù)

  C.和的大小由兩個加數(shù)的符號而定

  D.和的大小由兩個加數(shù)的符號與絕對值而定

  5.如果a,b是有理數(shù),那么下列各式中成立的是(  )

  A.如果a<0,b<0,那么a+b>0

  B.如果a>0,b<0,那么a+b>0

  C.如果a>0,b<0,那么a+b<0

  D.如果a>0,b<0,且|a|>|b|,那么a+b>0

  《2.4.2有理數(shù)的加法運算律》測試

  7.張大伯共有7塊麥田,今年的收成與去年相比(增產(chǎn)為正,減產(chǎn)為負(fù))情況如下(單位:kg):+320,-170,-320,+130,+150,+40,-150.則今年小麥的總產(chǎn)量與去年相比(  )

  A.增產(chǎn)20 kg B.減產(chǎn)20 kg C.增長120 kg D.持平

  8.一口井水面比井口低3米,一只蝸牛從水面沿著井壁往井口爬,第一次往上爬了0.5米,往下滑了0.1米;第二次往上爬了0.42米,卻又下滑了0.15米;第三次往上爬了0.7米,卻又下滑了0.15米;第四次往上爬了0.75米,卻又下滑了0.2米;第五次往上爬了0.55米,沒有下滑;第六次往上爬了0.48米,此時蝸牛有沒有爬出井口?請通過列式計算加以說明

初一數(shù)學(xué)上冊的教案2

  教材分析

  方程是應(yīng)用廣泛的數(shù)學(xué)工具,是代數(shù)學(xué)的核心內(nèi)容,在義務(wù)教育階段的數(shù)學(xué)課程中占有重要地位。本節(jié)課選自人教版數(shù)學(xué)七年級上冊第三章第一節(jié)的內(nèi)容,是一節(jié)引入課,對于激發(fā)學(xué)生學(xué)習(xí)方程的興趣,獲得解決實際問題的基本方法具有十分重要的作用。本節(jié)課是結(jié)合學(xué)生已有學(xué)習(xí)經(jīng)驗,從算式到方程,繼而對一元一次方程及方程的解進(jìn)行了探究,讓學(xué)生體驗未知數(shù)參與運算的好處,用方程分析問題、解決問題(即培養(yǎng)學(xué)生建模的思想),體會學(xué)習(xí)方程的意義和作用。本節(jié)課是在承接小學(xué)學(xué)習(xí)的簡易方程和剛剛學(xué)習(xí)的整式的加減的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,同時又是后續(xù)學(xué)習(xí)二元一次方程、一元二次方程的重要基礎(chǔ)。因此,這節(jié)課在教材中起到了承上啟下的作用。

  學(xué)情分析

  學(xué)生前面已經(jīng)學(xué)習(xí)了簡單的方程及整式的內(nèi)容,為本節(jié)課的學(xué)習(xí)做好了鋪墊。

  七年級的學(xué)生思維活躍,求知欲強(qiáng),有比較強(qiáng)烈的自我意識,對觀察、猜想、探索性的問題充滿好奇,因而在教學(xué)素材的選取與呈現(xiàn)方式以及學(xué)習(xí)活動的安排上力求設(shè)置學(xué)生感興趣的并且具有挑戰(zhàn)性的內(nèi)容,讓學(xué)生感受到數(shù)學(xué)來源于生活又回歸生活實際,無形中產(chǎn)生濃厚的學(xué)習(xí)興趣和探索熱情。

  七年級學(xué)生對于方程已經(jīng)具備了一定的知識基礎(chǔ),但是對方程的理解還比較膚淺、模糊,還處于感性層面,缺乏理性的認(rèn)識和把握,而且學(xué)生正處于感性認(rèn)識向理性認(rèn)識過渡的時期,抽象思維能力有待提高,對于一元一次方程的概念教學(xué)要選取具體的問題情境,逐步抽象。

  七年級的學(xué)生很想利用所學(xué)的知識解決問題,通過對幾個問題的分析、探討、相互交流,逐步培養(yǎng)學(xué)生的觀察、探索、歸納等能力,提高對課本知識的運用能力,從而認(rèn)識歸納一元一次方程的相關(guān)概念,在練習(xí)中鞏固和熟悉一元一次方程。

  教學(xué)目標(biāo)

  1.知識與技能目標(biāo)

  (1)掌握方程、一元一次方程的定義,知道什么是方程的解。

  (2)體會字母表示數(shù)的好處,會根據(jù)實際問題的條件列方程,能檢驗出一個數(shù)值是否是方程的解。

  2.過程與方法目標(biāo)

 。1)通過將實際問題抽象成數(shù)學(xué)問題,分析實際問題中的數(shù)量關(guān)系,利用其中的相等關(guān)系列出方程,滲透數(shù)學(xué)建模的`思想,認(rèn)識到從算式到方程是數(shù)學(xué)的一種進(jìn)步。

 。2)通過具體情境貼近學(xué)生生活,在生活中挖掘數(shù)學(xué)問題,解決數(shù)學(xué)問題,使數(shù)學(xué)生活化,生活數(shù)學(xué)化,會利用一元一次方程的知識解決一些實際問題。

  3.情感態(tài)度與價值觀目標(biāo)

 。1)通過具體情境的探索、交流等數(shù)學(xué)活動培養(yǎng)學(xué)生的團(tuán)體合作精神和積極參與、勤于思考的意識。

 。2)激發(fā)學(xué)生的求知欲和學(xué)習(xí)數(shù)學(xué)的熱情,培養(yǎng)獨立思考和合作交流的能力,讓他們享受成功的喜悅。

  (3)經(jīng)歷從生活中發(fā)現(xiàn)數(shù)學(xué)和應(yīng)用數(shù)學(xué)解決實際問題的過程,樹立多種方法解決問題的創(chuàng)新意識,增強(qiáng)用數(shù)學(xué)的意識,體會數(shù)學(xué)的應(yīng)用價值。

  教學(xué)重點、難點

  教學(xué)重點:1.方程、一元一次方程、方程的解的概念。

  2.根據(jù)實際問題的條件列出方程。

  教學(xué)難點:分析實際問題中的數(shù)量關(guān)系,利用其中的相等關(guān)系列出方程。

  教學(xué)過程

  一、創(chuàng)設(shè)情境 導(dǎo)入新課

  二、探究新知 形成概念

  三、應(yīng)用新知 鞏固提高

  四、感悟反思

  五、名題欣賞

  六、布置作業(yè)

  板書設(shè)計

初一數(shù)學(xué)上冊的教案3

  《1.2有理數(shù)》教學(xué)設(shè)計

  【學(xué)習(xí)目標(biāo)】:

  1、掌握有理數(shù)的 概念,會對有理數(shù)按一定標(biāo)準(zhǔn)進(jìn)行分類,培養(yǎng)分類能力;

  2、了解分類的標(biāo)準(zhǔn) 與集合的含義;

  3、體驗分類是數(shù)學(xué)上常用的處理問題方法;

  【學(xué)習(xí)重點】:正確理解有理數(shù)的概念

  【學(xué)習(xí)難點】:正確理解分類的標(biāo)準(zhǔn)和按照一定標(biāo)準(zhǔn)分類

  《1.2.1有理數(shù)》同步練習(xí)含答案

  5.對-3.14,下面說法正確的是(B)

  A.是負(fù)數(shù),不是分?jǐn)?shù)

  B.是負(fù)數(shù),也是分?jǐn)?shù)

  C.是分?jǐn)?shù),不是有理數(shù)

  D.不是分?jǐn)?shù),是有理數(shù)

  《1.2有理數(shù)》同步練習(xí)含答案解析

  8.如果a與1互為相反數(shù),則|a|=( )

  A.2 B.﹣2 C.1 D.﹣1

  【考點】絕對值;相反數(shù).

  【分析】根據(jù)互為相反數(shù)的定義,知a=﹣1,從而求解.

  互為相反數(shù)的定義:只有符號不同的`兩個數(shù)叫互為相反數(shù).

  【解答】解:根據(jù)a與1互為相反數(shù),得

  a=﹣1.

  所以|a|=1.

  故選C.

  【點評】此題主要是考查了相反數(shù)的概念和絕對值的性質(zhì).

  9.若|1﹣a|=a﹣1,則a的取值范圍是( )

  A.a>1 B.a≥1 C.a<1 D.a≤1

  【考點】絕對值.

  【分析】根據(jù)|1﹣a|=a﹣1得到1﹣a≤0,從而求得答案.

  【解答】解:∵|1﹣a|=a﹣1,

  ∴1﹣a≤0,

  ∴a≥1,

  故選B.

  【點評】本題考查了絕對值的求法,解題的關(guān)鍵是了解非正數(shù)的絕對值是它的相反數(shù),難度不大.

初一數(shù)學(xué)上冊的教案4

  《1.1正數(shù)和負(fù)數(shù)》教學(xué)設(shè)計

  教學(xué)目標(biāo)

  1. 通過對“零”的意義的探討,進(jìn)一步理解正數(shù)和負(fù)數(shù)的概念,能利用正負(fù)數(shù)正確表示相反意義的量(規(guī)定了向指定方向變化的量);

  2. 進(jìn)一步體驗正負(fù)數(shù)在生產(chǎn)生活中的廣泛應(yīng)用,提高解決實際問題的能力;

  3. 激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

  [教學(xué)重點與難點]

  重點:深化對正負(fù)數(shù)概念的理解.

  難點:正確理解和表示向指定方向變化的量

  《1.1正數(shù)和負(fù)數(shù)》同步練習(xí)

  1、下列說法正確的是( )

  A、零 是正數(shù)不是負(fù)數(shù) B、零既不是正數(shù)也不是負(fù)數(shù)

  C、零既是正數(shù)也是負(fù)數(shù) D、不是正數(shù)的數(shù)一定是負(fù)數(shù),不是負(fù)數(shù)的數(shù)一定是正數(shù)

  2、向東行進(jìn)-30米表示的意義是( )

  A、向東行進(jìn)30米 B、向東行進(jìn)-30米

  C、向西行進(jìn)30米 D、向西行進(jìn)-30米

  3、零上13℃記作 +13℃,零下2℃可記作( )

  A、2 B、-2 C、2℃ D、-2℃

  4、某市20 15年元旦的最高氣溫為2℃,最低氣溫為-8℃,那么這天的最高 氣溫比 最低氣溫高( )

  A、-10℃ B、-6℃ C、6℃ D、10℃

  5、 中,正數(shù)有 ,負(fù)數(shù)有 .

  6、如 果水位升高5m時水位變化記作+5m,那么水位下降3m時水位變化記作 m,

  水位不升不降時水位變化記作 m.

  7、在同一個問題中,分別用正數(shù)與負(fù)數(shù)表示的量具有 的意義.

  8、甲、乙兩人同時從A地出發(fā), 如果向南走48m,記作+48m,則乙向北走32m,記為 ,

  這時甲乙 兩人相距 m. .

  9、某種藥品的說明書上標(biāo)明保存溫度是(20±2)℃,由此可知在 ℃~ ℃范圍內(nèi)保存才合適.

  10、20xx年我國全年平均降水量比 上年減少24㎜,20xx年比上年增長8㎜,20xx年比上年減少20㎜。用正數(shù)和負(fù)數(shù)表示這三年我國全年平均降水量比上年的.增長量.

  11、如果把一個物體向右移動5m記作移動-5m,那么這個物體又移動+5m是什么 意思?這時物體離它兩次移動前的位置多 遠(yuǎn)?

  12、某老師把某一小組五名同學(xué)的成績簡記為:+10,-5,0,+8,-3,又知道記為0的成績表 示90分,正數(shù)表示超過90分,則五名 同學(xué)的平均成績?yōu)槎嗌俜?

  13、某地一天中午12時的氣溫是7℃,過5小時氣溫下降了4℃ ,又過7小時氣溫又下降了4℃,第二天0時的氣溫是多少?

  《1.1正數(shù)和負(fù)數(shù)》同步練習(xí)含答案

  19.體育課上,對初三(1)班的學(xué)生進(jìn)行了仰臥起坐的測試,以能做28個為標(biāo)準(zhǔn),超過的次數(shù)用正數(shù)來表示,不足的次數(shù)用負(fù)數(shù)來表示,其中10名 女學(xué)生成績?nèi)缦拢?、4、0、8、6、8、0、6、-5、-1.

  (1)這10名女生的達(dá)標(biāo)率為多少?

  (2)沒達(dá)標(biāo)的同學(xué)做了幾個仰臥起坐?

  解:(1)這10名女生的達(dá)標(biāo)率為8÷10 ×100%=80%.

  (2)沒達(dá)標(biāo)的同學(xué)做仰臥起坐的個數(shù)分別是23個和27個.

初一數(shù)學(xué)上冊的教案5

  4.1從問題到方程:教案

  【學(xué)習(xí)目標(biāo)】

  1.探索實際問題中的數(shù)量關(guān)系,并學(xué)會用方程描述;

  2.通過對多種實際問題中數(shù)量關(guān)系的分析,初步感受方程是刻畫現(xiàn)實世界的有效模型;

  3.通過觀察,歸納一元一次方程的概念.

  【導(dǎo)學(xué)提綱】

  1.左右兩個圖形中的天平都是平衡的,請回答以下問題:

  (1)你能知道左圖中的食鹽有多少克嗎?你是怎么知道的?

  (2)右圖中兩個相同小球的質(zhì)量相等,你能知道這兩個小球的質(zhì)量嗎?

  4.1從問題到方程:同步練習(xí)

  1.(20xx?哈爾濱)某車間有26名工人,每人每天可以生產(chǎn)800個螺釘或1000個螺母,1個螺釘需要配2個螺母,為使每天生產(chǎn)的螺釘和螺母剛好配套.設(shè)安排x名工人生產(chǎn)螺釘,則下面所列方程正確的是(  )

  A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x

  C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x

  【分析】題目已經(jīng)設(shè)出安排x名工人生產(chǎn)螺釘,則(26﹣x)人生產(chǎn)螺母,由一個螺釘配兩個螺母可知螺母的個數(shù)是螺釘個數(shù)的2倍從而得出等量關(guān)系,就可以列出方程.

  【解答】解:設(shè)安排x名工人生產(chǎn)螺釘,則(26﹣x)人生產(chǎn)螺母,由題意得

  1000(26﹣x)=2×800x,故C答案正確,

  故選C

  【點評】本題是一道列一元一次方程解的'應(yīng)用題,考查了列方程解應(yīng)用題的步驟及掌握解應(yīng)用題的關(guān)鍵是建立等量關(guān)系.

  《4.1從問題到方程》測試

  1.某學(xué)校組織600名學(xué)生分別到野生動物園和植物園開展社會實踐活動,到野生動物園的人數(shù)比到植物園人數(shù)的2倍少30人,若設(shè)到植物園的人數(shù)為x人,依題意,可列方程為_____.

  2.某項工程,甲隊單獨完成要30天,乙隊單獨完成要20天,若甲隊先做若干天后,由乙隊接替完成剩余的任務(wù),兩隊共用25天,求甲隊單獨工作的天數(shù),設(shè)甲隊單獨工作的天數(shù)為x,則可列方程為_____.

  3.某車間有26名工人,每人每天可以生產(chǎn)800個螺釘或1000個螺母,一個螺釘需要配兩個螺母,為使每天生產(chǎn)的螺釘和螺母剛好配套.設(shè)安排x名工人生產(chǎn)螺釘,根據(jù)題意可列方程得_____.

  4.某商店換季促銷,將一件標(biāo)價為240元的T恤8折售出,仍獲利20%,若設(shè)這件T恤的成本是x元,根據(jù)題意,可得到的方程是_____.

初一數(shù)學(xué)上冊的教案6

  初一上冊數(shù)學(xué)教案,歡迎各位老師和學(xué)生參考!

  學(xué)習(xí)目標(biāo):1、理解有理數(shù)的絕對值和相反數(shù)的意義。

  2、會求已知數(shù)的相反數(shù)和絕對值。

  3、會用絕對值比較兩個負(fù)數(shù)的大小。

  4、經(jīng)歷將實際問題數(shù)學(xué)化的過程,感受數(shù)學(xué)與生活的聯(lián)系。

  學(xué)習(xí)重點:1.會用絕對值比較兩個負(fù)數(shù)的大小。

  2.會求已知數(shù)的相反數(shù)和絕對值。

  學(xué)習(xí)難點:理解有理數(shù)的絕對值和相反數(shù)的意義。

  學(xué)習(xí)過程:

  一、創(chuàng)設(shè)情境

  根據(jù)絕對值與相反數(shù)的意義填空:

  1、

  2、

  -5的`相反數(shù)是______,-10.5的相反數(shù)是______, 的相反數(shù)是______;

  3、|0|=______,0的相反數(shù)是______。

  二、探索感悟

  1、議一議

  (1)任意說出一個數(shù),說出它的絕對值、它的相反數(shù)。

  (2)一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關(guān)系?

  2、想一想

  (1)2與3哪個大?這兩個數(shù)的絕對值哪個大?

  (2)-1與-4哪個大?這兩個數(shù)的絕對值哪個大?

  (3)任意寫出兩個負(fù)數(shù),并說出這兩個負(fù)數(shù)哪個大?他們的絕對值哪個大?

  (4)兩個有理數(shù)的大小與這兩個數(shù)的絕對值的大小有什么關(guān)系?

  三.例題精講

  例1. 求下列各數(shù)的絕對值:

  +9,-16,-0.2,0.

  求一個數(shù)的絕對值,首先要分清這個數(shù)是正數(shù)、負(fù)數(shù)還是0,然后才能正確地寫出它的絕對值。

  議一議:(1)兩個數(shù)比較大小,絕對值大的那個數(shù)一定大嗎?

  (2)數(shù)軸上的點的大小是如何排列的?

  例2比較-10.12與-5.2的大小。

  例3.求6、-6、14 、-14 的絕對值。

  小節(jié)與思考:

  這節(jié)課你有何收獲?

  四.練習(xí)

  1. 填空:

 、 的符號是 ,絕對值是 ;

 、10.5的符號是 ,絕對值是

 、欠柺+號,絕對值是 的數(shù)是

 、确柺-號,絕對值是9的數(shù)是 ;

 、煞柺-號,絕對值是0.37的數(shù)是 .

  2. 正式足球比賽時所用足球的質(zhì)量有嚴(yán)格的規(guī)定,下表是6個足球的質(zhì)量檢測結(jié)果(用正數(shù)記超過規(guī)定質(zhì)量的克數(shù),用負(fù)數(shù)記不足規(guī)定質(zhì)量的克數(shù)).

  請指出哪個足球質(zhì)量最好,為什么?

  第1個第2個第3個第4個第5個第6個

  -25-10+20+30+15-40

  3.比較下面有理數(shù)的大小

  (1)-0.7與-1.7 (2) (3) (4)-5與0

  五、布置作業(yè):

  P25 習(xí)題2.3 5

  家庭作業(yè):《評價手冊》 《補(bǔ)充習(xí)題》

  六、學(xué)后記/教后記

  這篇初一上冊數(shù)學(xué)教案就為大家分享到這里了。希望對大家有所幫助!

初一數(shù)學(xué)上冊的教案7

  一、知識要點

  本章的主要內(nèi)容可以概括為有理數(shù)的概念與有理數(shù)的運算兩部分。有理數(shù)的概念可以利用數(shù)軸來認(rèn)識、理解,同時,利用數(shù)軸又可以把這些概念串在一起。有理數(shù)的運算是全章的重點。在具體運算時,要注意四個方面,一是運算法則,二是運算律,三是運算順序,四是近似計算。

  基礎(chǔ)知識:

  1、大于0的數(shù)叫做正數(shù)。

  2、在正數(shù)前面加上負(fù)號“-”的數(shù)叫做負(fù)數(shù)。

  3、0既不是正數(shù)也不是負(fù)數(shù)。

  4、有理數(shù)(rationalnumber):正整數(shù)、負(fù)整數(shù)、0、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)都可以寫成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。

  5、數(shù)軸(numberaxis):通常,用一條直線上的點表示數(shù),這條直線叫做數(shù)軸。

  數(shù)軸滿足以下要求:

  (1)在直線上任取一個點表示數(shù)0,這個點叫做原點(origin);

  (2)通常規(guī)定直線上從原點向右(或上)為正方向,從原點向左(或下)為負(fù)方向;

  (3)選取適當(dāng)?shù)拈L度為單位長度。

  6、相反數(shù)(oppositenumber):絕對值相等,只有負(fù)號不同的兩個數(shù)叫做互為相反數(shù)。

  7、絕對值(absolutevalue)一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值。記做|a|。

  由絕對值的定義可得:|a-b|表示數(shù)軸上a點到b點的距離。

  一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0.

  正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù);兩個負(fù)數(shù),絕對值大的反而小。

  8、有理數(shù)加法法則

  (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  (2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0.

  (3)一個數(shù)同0相加,仍得這個數(shù)。

  加法交換律:有理數(shù)的加法中,兩個數(shù)相加,交換加數(shù)的位置,和不變。表達(dá)式:a+b=b+a。

  加法結(jié)合律:有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加或者先把后兩個數(shù)相加,和不變。

  表達(dá)式:(a+b)+c=a+(b+c)

  9、有理數(shù)減法法則

  減去一個數(shù),等于加這個數(shù)的相反數(shù)。表達(dá)式:a-b=a+(-b)

  10、有理數(shù)乘法法則

  兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。

  任何數(shù)同0相乘,都得0.

  乘法交換律:一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。表達(dá)式:ab=ba

  乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。表達(dá)式:(ab)c=a(bc)

  乘法分配律:一般地,一個數(shù)同兩個的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。

  表達(dá)式:a(b+c)=ab+ac

  11、倒數(shù)

  1除以一個數(shù)(零除外)的商,叫做這個數(shù)的倒數(shù)。如果兩個數(shù)互為倒數(shù),那么這兩個數(shù)的積等于1。

  12、有理數(shù)除法法則:兩數(shù)相除,同號得負(fù),異號得正,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0.

  13、有理數(shù)的乘方:求n個相同因數(shù)的積的運算,叫做乘方,乘方的結(jié)果叫做冪(power)。an中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponent)。

  根據(jù)有理數(shù)的乘法法則可以得出:負(fù)數(shù)的.奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

  14、有理數(shù)的混合運算順序

  (1)“先乘方,再乘除,最后加減”的順序進(jìn)行;

  (2)同級運算,從左到右進(jìn)行;

  (3)如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進(jìn)行。

  15、科學(xué)技術(shù)法:把一個大于10的數(shù)表示成a﹡10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù)(即0

  16、近似數(shù)(approximatenumber):

  17、有理數(shù)可以寫成m/n(m、n是整數(shù),n≠0)的形式。另一方面,形如m/n(m、n是整數(shù),n≠0)的數(shù)都是有理數(shù)。所以有理數(shù)可以用m/n(m、n是整數(shù),n≠0)表示。

  拓展知識:

  1、數(shù)集:把一些數(shù)放在一起,就組成一個數(shù)的集合,簡稱數(shù)集。

  一、(1)所有有理數(shù)組成的數(shù)集叫做有理數(shù)集;

  二、(2)所有的整數(shù)組成的數(shù)集叫做整數(shù)集。

  2、任何有理數(shù)都可以用數(shù)軸上的一個點來表示,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  3、根據(jù)絕對值的幾何意義知道:|a|≥0,即對任何有理數(shù)a,它的絕對值是非負(fù)數(shù)。

  4、比較兩個有理數(shù)大小的方法有:

  (1)根據(jù)有理數(shù)在數(shù)軸上對應(yīng)的點的位置直接比較;

  (2)根據(jù)規(guī)定進(jìn)行比較:兩個正數(shù);正數(shù)與零;負(fù)數(shù)與零;正數(shù)與負(fù)數(shù);兩個負(fù)數(shù),體現(xiàn)了分類討論的數(shù)學(xué)思想;

  (3)做差法:a-b>0a>b;

  (4)做商法:a/b>1,b>0a>b.

  二、基礎(chǔ)訓(xùn)練

  選擇題

  1、下列運算中正確的是().

  A.a2a3=a6 B.=2 C.|(3-π)|=-π-3 D.32=-9

  2、下列各判斷句中錯誤的是()

  A.數(shù)軸上原點的位置可以任意選定

  B.數(shù)軸上與原點的距離等于個單位的點有兩個

  C.與原點距離等于-2的點應(yīng)當(dāng)用原點左邊第2個單位的點來表示

  D.數(shù)軸上無論怎樣靠近的兩個表示有理數(shù)的點之間,一定還存在著表示有理數(shù)的點。

  3、、是有理數(shù),若>且,下列說法正確的是()

  A.一定是正數(shù)B.一定是負(fù)數(shù)C.一定是正數(shù)D.一定是負(fù)數(shù)

  4、兩數(shù)相加,如果比每個加數(shù)都小,那么這兩個數(shù)是()

  A.同為正數(shù)B.同為負(fù)數(shù)C.一個正數(shù),一個負(fù)數(shù)D.0和一個負(fù)數(shù)

  5、兩個非零有理數(shù)的和為零,則它們的商是()

  A.0B.-1C.+1D.不能確定

  6、一個數(shù)和它的倒數(shù)相等,則這個數(shù)是()

  A.1B.-1C.±1D.±1和0

  7、如果|a|=-a,下列成立的是()

  A.a>0B.a<0c.a>0或a=0D.a<0或a=0

  8、(-2)11+(-2)10的值是()

  A.-2B.(-2)21C.0D.-210

  9、已知4個礦泉水空瓶可以換礦泉水一瓶,現(xiàn)有16個礦泉水空瓶,若不交錢,最多可以喝礦泉水()

  A.3瓶B.4瓶C.5瓶D.6瓶

  10、在下列說法中,正確的個數(shù)是()

  ⑴任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示

 、茢(shù)軸上的每一個點都表示一個有理數(shù)

 、侨魏斡欣頂(shù)的絕對值都不可能是負(fù)數(shù)

 、让總有理數(shù)都有相反數(shù)

  A、1B、2C、3D、4

  11、如果一個數(shù)的相反數(shù)比它本身大,那么這個數(shù)為()

  A、正數(shù)B、負(fù)數(shù)

  C、整數(shù)D、不等于零的有理數(shù)

  12、下列說法正確的是()

  A、幾個有理數(shù)相乘,當(dāng)因數(shù)有奇數(shù)個時,積為負(fù);

  B、幾個有理數(shù)相乘,當(dāng)正因數(shù)有奇數(shù)個時,積為負(fù);

  C、幾個有理數(shù)相乘,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積為負(fù);

  D、幾個有理數(shù)相乘,當(dāng)積為負(fù)數(shù)時,負(fù)因數(shù)有奇數(shù)個;

  填空題

  1、在有理數(shù)-7,,-(-1.43),,0,,-1.7321中,是整數(shù)的有_____________是負(fù)分?jǐn)?shù)的有_______________。

  2、一般地,設(shè)a是一個正數(shù),則數(shù)軸上表示數(shù)a的點在原點的____邊,與原點的距離是____個單位長度;表示數(shù)-a的點在原點的____邊,與原點的距離是____個單位長度。

  3、如果一個數(shù)是6位整數(shù),用科學(xué)記數(shù)法表示它時,10的指數(shù)是_____;用科學(xué)記數(shù)法表示一個n位整數(shù),其中10的指數(shù)是___________.

  4、實數(shù)a、b、c在數(shù)軸上的位置如圖:化簡|a-b|+|b-c|-|c-a|.

  5、絕對值大于1而小于4的整數(shù)有_____________________________________,其和為___________.

  6、若a、b互為相反數(shù),c、d互為倒數(shù),則(a+b)3-3(cd)4=________.

  7、1-2+3-4+5-6+……+20xx-2002的值是____________.

  8、若(a-1)2+|b+2|=0,那么a+b=_____________________.

  9、平方等于它本身的有理數(shù)是___________,立方等于它本身的有理數(shù)是_____________.

  10、用四舍五入法把3.1415926精確到千分位是,用科學(xué)記數(shù)法表示302400,應(yīng)記為,近似數(shù)3.0×精確到位。

  11、正數(shù)–a的絕對值為__________;負(fù)數(shù)–b的絕對值為________

  12、甲乙兩數(shù)的和為-23.4,乙數(shù)為-8.1,甲比乙大

  13、在數(shù)軸上表示兩個數(shù),的數(shù)總比的大。(用“左邊”“右邊”填空)

  14、數(shù)軸上原點右邊4.8厘米處的點表示的有理數(shù)是32,那么,數(shù)軸左邊18厘米處的點表示的有理數(shù)是____________。

  三、強(qiáng)化訓(xùn)練

  1、計算:1+2+3+…+20xx+2003=__________.

  2、已知:若(a,b均為整數(shù))則a+b=

  3、觀察下列等式,你會發(fā)現(xiàn)什么規(guī)律:,,,。。。請將你發(fā)現(xiàn)的規(guī)律用只含一個字母n(n為正整數(shù))的等式表示出來

  4、已知,則___________

  5、已知是整數(shù),是一個偶數(shù),則a是(奇,偶)

  6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。

  7、在數(shù)1,2,3,…,50前添“+”或“-”,并求它們的和,所得結(jié)果的最小非負(fù)數(shù)是多少?請列出算式解答。

  8、如果有理數(shù)a,b滿足∣ab-2∣+(1-b)2=0,試求+…+的值。

  9、如果規(guī)定符號“*”的意義是a*b=ab/(a+b),求2*(-3)*4的值。

  10、已知|x+1|=4,(y+2)2=4,求x+y的值。

  11、投資股票是一種很重要的投資方式,但股市的風(fēng)云變化又牽動了股民的心。

  例:某股民在上星期五買進(jìn)某種股票500股,每股60元,下表是本周每日該股票的漲跌情況(單位:元):

  星期一二三四五

  每股漲跌+4+4.5-1-2.5-6

  第1章(1)星期三收盤時,每股是多少元?

  第2章(2)本周內(nèi)最高價是每股多少元?最低價是多少元?

  第3章(3)已知買進(jìn)股票是付了1.5‰的手續(xù)費,賣出時需付成交額1.5‰的手續(xù)費和1‰的交易費,如果在星期五收盤前將全部股票一次性地賣出,他的收益情況如何?

  第4章(4)以買進(jìn)的股價為0點,用折線統(tǒng)計圖表示本周該股的股價情況。

  四、競賽訓(xùn)練:

  1、最小的非負(fù)有理數(shù)與最大的非正有理數(shù)的和是

  2、乘積=

  3、比較大小:A=,B=,則A B

  4、滿足不等式104≤A≤105的整數(shù)A的個數(shù)是x×104+1,則x的值是( )

  A、9 B、8 C、7 D、6

  5、最小的一位數(shù)的質(zhì)數(shù)與最小的兩位數(shù)的質(zhì)數(shù)的積是( )

  A、11 B、22 C、26 D、33

  6、比較

  7、計算:

  8、計算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).xkb1.com

  9、計算:

  10、計算

  11、計算1+3+5+7+…+1997+1999的值

  12、計算1+5+52+53+…+599+5100的值.

  13、有理數(shù)均不為0,且設(shè)試求代數(shù)式20xx之值。

  14、已知a、b、c為實數(shù),且,求的值。

  15、已知:。

  16、解方程組。

  17、若a、b、c為整數(shù),且,求的值。

  1.2.1有理數(shù)

  七年級上(1.1正數(shù)和負(fù)數(shù),1.2有理數(shù))

  1.2有理數(shù)

初一數(shù)學(xué)上冊的教案8

  教學(xué)目標(biāo):

  知識能力:理解有理數(shù)的概念,掌握有理數(shù)的兩種分類方法,能夠按要求對給定的有理數(shù)進(jìn)行分類。

  過程與方法:通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生正確的分類討論觀點和分類能力。

  情感、態(tài)度、價值觀:通過本節(jié)課的學(xué)習(xí),體驗成功的喜悅,保持學(xué)好數(shù)學(xué)的信心。

  教學(xué)重點:掌握有理數(shù)的兩種分類方法

  教學(xué)難點:給定的數(shù)字將被填入它所屬的集合中

  教學(xué)方法:問題導(dǎo)向法

  學(xué)習(xí)方法:自主探究法

  一、形勢歸納

  小學(xué)我們學(xué)了整數(shù)和分?jǐn)?shù),上節(jié)課我們學(xué)了正數(shù)和負(fù)數(shù)。誰能快速提出以下問題?

  1.有以下數(shù)字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33

  (1)將以上數(shù)字填入以下兩組:正整數(shù)集{}和負(fù)整數(shù)集{}。你填完了嗎?

  (2)將以上數(shù)字填入以下兩個集合:整數(shù)集合{}和分?jǐn)?shù)集合{}。你填完了嗎?

  稱整數(shù)和分?jǐn)?shù)為有理數(shù)。(指點題,板書)

  二、自學(xué)指導(dǎo)

  學(xué)生自學(xué)課本,根據(jù)課本尋找自學(xué)的機(jī)會

  提綱中問題的答案;老師先做必要的板書準(zhǔn)備,再到學(xué)生中巡視指導(dǎo),并了解掌握學(xué)生自學(xué)情況,為展示歸納作準(zhǔn)備。

  附:自學(xué)提綱:

  1.___________、____、_______統(tǒng)稱為整數(shù),

  2._______和_________統(tǒng)稱為分?jǐn)?shù)

  3.____ ______統(tǒng)稱為有理數(shù),

  4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整數(shù): 、分?jǐn)?shù):;正整數(shù):、負(fù)整數(shù): 、正分?jǐn)?shù): 、負(fù)分?jǐn)?shù):.

  三、展示歸納

  1、找有問題的學(xué)生逐題展示自學(xué)提綱中的問題答案,學(xué)生說,老師板書;

  2、發(fā)動學(xué)生進(jìn)行評價、補(bǔ)充、完善,教師根據(jù)每個題目的展示情況進(jìn)行必要的講解和強(qiáng)調(diào);

  3、全部展示完畢后,老師對本段知識做系統(tǒng)梳理,關(guān)鍵點予以強(qiáng)調(diào)。

  四、變式練習(xí)

  逐題出示,先讓學(xué)生獨立完成,再請有問題的學(xué)生匯報結(jié)果,老師板書,并發(fā)動其他學(xué)生評價、補(bǔ)充并完善,最后老師根據(jù)需要進(jìn)行重點強(qiáng)調(diào)。

  1.整數(shù)可分為:_____、______和_______,分?jǐn)?shù)可分為:_______和_________.有理數(shù)按符號不同可分為正有理數(shù),_______和________.

  2.判斷下列說法是否正確,并說明理由。

  (1)有理數(shù)包括有整數(shù)和分?jǐn)?shù).

  (2)0.3不是有理數(shù).

  (3)0不是有理數(shù).

  (4)一個有理數(shù)不是正數(shù)就是負(fù)數(shù).

  (5)一個有理數(shù)不是整數(shù)就是分?jǐn)?shù)

  3.所有的正整數(shù)組成正整數(shù)集合,所有負(fù)整數(shù)組成負(fù)整數(shù)集合,依次類推有正數(shù)集合、負(fù)數(shù)集合、整數(shù)集合、分?jǐn)?shù)集合等,把下面的`有理數(shù)填入它屬于的集合中(大括號內(nèi),將各數(shù)用逗號分開):

  楊桂花:1.2.1有理數(shù)教學(xué)設(shè)計

  正數(shù)集合:{ …}負(fù)數(shù)集合:{ …}

  正整數(shù)集合:{ …}負(fù)分?jǐn)?shù)集合:{ …}

  4.下列說法正確的是( )

  A.0是最小的正整數(shù)

  B.0是最小的有理數(shù)

  C.0既不是整數(shù)也不是分?jǐn)?shù)

  D. 0既不是正數(shù)也不是負(fù)數(shù)

  5、下列說法正確的有( )

  (1)整數(shù)就是正整數(shù)和負(fù)整數(shù)(2)零是整數(shù),但不是自然數(shù)(3)分?jǐn)?shù)包括正分?jǐn)?shù)和負(fù)分?jǐn)?shù)(4)正數(shù)和負(fù)數(shù)統(tǒng)稱為有理數(shù)(5)一個有理數(shù),它不是整數(shù)就是分?jǐn)?shù)

  五、總結(jié)與反思:通過本節(jié)課的學(xué)習(xí),你有什么收獲?

  六、作業(yè):必做題:課本14頁:1、9題

初一數(shù)學(xué)上冊的教案9

  教學(xué)目標(biāo):

  1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推力意識,主動探究的習(xí)慣,進(jìn)一步體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系。

  2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進(jìn)一步發(fā)展學(xué)生的說理和簡單的推理的意識及能力。

  重點難點:

  重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。

  難點:勾股定理的發(fā)現(xiàn)

  教學(xué)過程

  一、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題

  出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻(xiàn),并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。

  出示投影2(書中的P2圖1—2)并回答:

  1、觀察圖1-2,正方形A中有_______個小方格,即A的面積為______個單位。

  正方形B中有_______個小方格,即A的面積為______個單位。

  正方形C中有_______個小方格,即A的面積為______個單位。

  2、你是怎樣得出上面的結(jié)果的?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問:

  3、圖1—2中,A,B,C之間的面積之間有什么關(guān)系?

  學(xué)生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A.B,C的關(guān)系呢?

  二、做一做

  出示投影3(書中P3圖1—4)提問:

  1、圖1—3中,A,B,C之間有什么關(guān)系?

  2、圖1—4中,A,B,C之間有什么關(guān)系?

  3、從圖1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?

  學(xué)生討論、交流形成共識后,教師總結(jié):

  以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

  三、議一議

  1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

  2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?

  在同學(xué)的交流基礎(chǔ)上,老師板書:

  直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

  也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

  那么

  我國古代稱直角三角形的較短的`直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

  3、分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學(xué)生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?(回答是肯定的:成立)

  四、想一想

  這里的29英寸(74厘米)的電視機(jī),指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

  五、鞏固練習(xí)

  1、錯例辨析:

  △ABC的兩邊為3和4,求第三邊

  解:由于三角形的兩邊為3、4

  所以它的第三邊的c應(yīng)滿足=25

  即:c=5

  辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個必不可少的條件,可本題

  △ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。

  (2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊

  綜上所述這個題目條件不足,第三邊無法求得。

  2、練習(xí)P7§1.11

  六、作業(yè)

  課本P7§1.12、3、4

  教學(xué)目標(biāo):

  1.經(jīng)歷運用拼圖的方法說明勾股定理是正確的過程,在數(shù)學(xué)活動中發(fā)展學(xué)生的探究意識和合作交流的習(xí)慣。

  2.掌握勾股定理和他的簡單應(yīng)用

  重點難點:

  重點:能熟練運用拼圖的方法證明勾股定理

  難點:用面積證勾股定理

  教學(xué)過程

  七、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題

  我們已經(jīng)通過數(shù)格子的方法發(fā)現(xiàn)了直角三角形三邊的關(guān)系,究竟是幾個實例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內(nèi)容,下邊請大家畫四個全等的直角三角形,并把它剪下來,用這四個直角三角形,拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的正方形,并與同學(xué)交流。在同學(xué)操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可表示為什么?

  (同學(xué)們回答有這幾種可能:(1)(2))

  在同學(xué)交流形成共識之后,教師把這兩種表示大正方形面積的式子用等號連接起來。

  =請同學(xué)們對上面的式子進(jìn)行化簡,得到:即=

  這就可以從理論上說明勾股定理存在。請同學(xué)們?nèi)ビ脛e的拼圖方法說明勾股定理。

  八、講例

  1.飛機(jī)在空中水平飛行,某一時刻剛好飛機(jī)飛到一個男孩頭頂正上方4000多米處,過20秒,飛機(jī)距離這個男孩頭頂5000米,飛機(jī)每時飛行多少千米?

  分析:根據(jù)題意:可以先畫出符合題意的圖形。如右圖,圖中△ABC的米,AB=5000米,欲求飛機(jī)每小時飛行多少千米,就要知道飛機(jī)在20秒的時間里的飛行路程,即圖中的CB的長,由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。

  解:由勾股定理得

  即BC=3千米飛機(jī)20秒飛行3千米,那么它1小時飛行的距離為:

  答:飛機(jī)每個小時飛行540千米。

  九、議一議

  展示投影2(書中的圖1—9)

  觀察上圖,應(yīng)用數(shù)格子的方法判斷圖中的三角形的三邊長是否滿足

  同學(xué)在議論交流形成共識之后,老師總結(jié)。

  勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

  十、作業(yè)

  1、1、課文P11§1.21、2

  2、選用作業(yè)。

初一數(shù)學(xué)上冊的教案10

  【學(xué)習(xí)目標(biāo)】

  1.理解兩點確定一條直線的事實。

  2.掌握直線、射線、線段的表示方法。

  3.理解直線、射線、線段的聯(lián)系與區(qū)別。

  【學(xué)習(xí)重難點】

  重點:理解并掌握直線的性質(zhì),會用字母表示圖形和根據(jù)語言描述畫出圖形。

  難點:根據(jù)語言描述畫出圖形,建立圖形和語言之間的聯(lián)系。

  【自主學(xué)習(xí)】

  1.直線的基本性質(zhì)是 。

  2.點一般用 表示。

  3.直線的表示方法有兩種:(1)用 表示;(2)用 表示。

  4.射線的表示方法有兩種:(1)用 表示;(2)用 表示。

  5.線段的`表示方法有兩種:(1)用 表示;(2)用 表示。

  6.點與直線的位置關(guān)系有兩種情況:分別是 和 。

  7. 叫做兩條直線相交。

  探究一 直線的基本性質(zhì)

  1.操作:如果你想將一根木條固定在墻上,至少需要幾個釘子?動手試試看。

  (1)請你先用一個釘子,是否可以轉(zhuǎn)動木條?這說明了什么?

  (2)請你再用兩個釘子,是否可以轉(zhuǎn)動木條?這又說明了什么?

  (3)猜想:如果將木條抽象成直線,將釘子抽象成點,你可以得出什么結(jié)論?

  2.直線的基本性質(zhì)有兩層含義:(1) (2) 。

  3.思考:你還能從生活中舉出應(yīng)用直線基本性質(zhì)的例子嗎?試試看。

  探究二 直線、射線、線段的區(qū)別與聯(lián)系

  請同學(xué)們先自己畫出一條直線,一條射線,一條線段,然后小組合作討論它們的區(qū)別與聯(lián)系,并將討論的結(jié)果填入下表。

初一數(shù)學(xué)上冊的教案11

  教學(xué)目標(biāo)

  1、知道有理數(shù)混合運算的運算順序,能正確進(jìn)行有理數(shù)的混合運算;

  2、會用計算器進(jìn)行較繁雜的有理數(shù)混合運算。

  教學(xué)重點

  1、有理數(shù)的混合運算;

  2、運用運算律進(jìn)行有理數(shù)的混合運算的簡便計算。

  教學(xué)難點

  運用運算律進(jìn)行有理數(shù)的混合運算的簡便計算。

  有理數(shù)的混合運算的'運算順序

  也就是說,在進(jìn)行含有加、減、乘、除的混合運算時,應(yīng)按照運算級別從高到低進(jìn)行,因為乘方是比乘除高一級的運算,所以像這樣的有理數(shù)的混合運算,有以下運算順序:

  先乘方,再乘除,最后加減。如果有括號,先進(jìn)行括號內(nèi)的運算。

  你會根據(jù)有理數(shù)的運算順序計算上面的算式嗎?

  2、8有理數(shù)的混合運算:同步練習(xí)

  1、有依次排列的3個數(shù):2,9,7,對任意相鄰的兩個數(shù),都用右邊的數(shù)減去左邊的數(shù),所得之差寫在這兩個數(shù)之間,可產(chǎn)生一個新數(shù)串:2,7,9,—2,7,這稱為第一次操作。做第二次同樣的操作后也可產(chǎn)生一個新數(shù)串:2,5,7,2,9,—11,—2,9,7,繼續(xù)依次操作下去,問:從數(shù)串2,9,7開始操作第一百次以后所產(chǎn)生的那個新數(shù)串的所有數(shù)之和是。

  《2、8有理數(shù)的混合運算》課后訓(xùn)練

  1、興旺肉聯(lián)廠的冷藏庫能使冷藏食品每小時降溫3 ℃,每開庫一次,庫內(nèi)溫度上升4 ℃,現(xiàn)有12 ℃的肉放入冷藏庫,2小時后開了一次庫,再過3小時后又開了一次庫,再關(guān)上庫門4小時后,肉的溫度是多少攝氏度?

初一數(shù)學(xué)上冊的教案12

  一、教材分析

  分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學(xué)大綱的基礎(chǔ)上確定本節(jié)課的教學(xué)目標(biāo)、重點和難點。首先來看一下本節(jié)課在教材中的地位和作用。

  1、有理數(shù)的加法在整個知識系統(tǒng)中的地位和作用是很重要的。初中階段要培養(yǎng)學(xué)生的運算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實模型,把它轉(zhuǎn)化成數(shù)學(xué)問題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識,增強(qiáng)學(xué)生對數(shù)學(xué)的理解和解決實際問題的能力。運算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運算的一種,它是有理數(shù)運算的重要基礎(chǔ)之一,它是整個初中代數(shù)的一個基礎(chǔ),它直接關(guān)系到有理數(shù)運算、實數(shù)運算、代數(shù)式運算、解方程、研究函數(shù)等內(nèi)容的`學(xué)習(xí)。

  本節(jié)課學(xué)生主要采用“探究學(xué)習(xí)法”,學(xué)生通過多媒體的演示;主動探索,發(fā)現(xiàn)規(guī)律;并及時進(jìn)行歸納總結(jié),使學(xué)生的主體地位得以體現(xiàn)又讓學(xué)生充分感受探究有理數(shù)加法法則的過程,符合學(xué)生的認(rèn)知過程。并且將單調(diào)的練習(xí)轉(zhuǎn)換成學(xué)生互相提問,互相比賽的方式,使學(xué)生的學(xué)習(xí)熱情得以調(diào)動。

  采用這種學(xué)習(xí)方法的優(yōu)點是:學(xué)生主動參與知識的發(fā)生、發(fā)展過程,在解決問題的過程中學(xué)習(xí),在探究的過程中,激發(fā)學(xué)生學(xué)習(xí)興趣和創(chuàng)作新熱情。掌握這種學(xué)習(xí)方法后,對學(xué)生的終生學(xué)習(xí)、終生發(fā)展有積極的意義。

  教學(xué)過程

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》明確指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人。”為能更多地向?qū)W生提供從事數(shù)學(xué)活動的機(jī)會,我將本節(jié)課的教學(xué)過程設(shè)為以下五個環(huán)節(jié):發(fā)現(xiàn)新知—再探新知—應(yīng)用新知—深化拓展—小結(jié)鞏固。

  (二)探索規(guī)律,得出法則:

  課件演示:(設(shè)置六個探究活動,以原點為起點,一只小狗在數(shù)軸上左右走動來表示情況,規(guī)定向左為正,向右為負(fù))讓學(xué)生體會兩個數(shù)相加的規(guī)律。

  (1)同向情況:

  1.情景

  探究1:一條狗先向右運動5米,再向右運動3米,那么兩次運動后的總結(jié)果是什么?

  探究2:一條狗先向左運動5米,再向左運動3米,那么兩次運動后的總結(jié)果是什么?

  2.探究問題:有理數(shù)兩個負(fù)數(shù)相加的和該怎么確定符號?怎么確定絕對值?(學(xué)生主動思考,展開討論)

  3.猜一猜,說一說(分組概括兩個負(fù)數(shù)的加法法則):

 、賰蓴(shù)相加,取相同的符號,并把絕對值相加;

 、谪(fù)數(shù)加負(fù)數(shù),取負(fù)號,并把絕對值相加。

  4.例:(-4)+(-5)

  (2)異向情況:

  1.情景:

  探究3:一條狗先向右運動5米,再向左運動3米,那么兩次運動后的總結(jié)果是什么?

初一數(shù)學(xué)上冊的教案13

  【教學(xué)目標(biāo)】

  1、經(jīng)歷探索去括號法則的過程,了解去括號法則的依據(jù)。

  2、會用去括號進(jìn)行簡單的計算。

  3、經(jīng)歷觀察、歸納等教學(xué)活動,培養(yǎng)學(xué)生合作精神和探究問題的能力。

  【重、難點】

  理解去括號法則,熟練運用去括號法則。

  【教學(xué)過程】

  一、情境創(chuàng)設(shè)

  在假期的.勤工儉學(xué)活動中,小亮從報社以每份0。4元的價格購進(jìn)a份報紙,以每份0。5元的價格賣出b份(b≤a)報紙,剩余的報紙以每份0。2元的價格退回報社,小亮贏利多少元?

  思考:如何合并你算出的這個代數(shù)式中的同類項?

  同步測試

  1、七年級(1)班男生有a人,女生比男生的2倍少25人,男生比女生的人數(shù)多。試回答下列問題。(用代數(shù)式來表示,能化簡的化簡)

 。1)女生有多少人?

 。2)男生比女生多多少人?

 。3)全班共有多少人?

  測試

  【拓展提優(yōu)】

  14、如果A是三次多項式,B是三次多項式,那么A+B一定是()

  A、六次多項式

  B、次數(shù)不高于3的整式

  C、三次多項式

  D、次數(shù)不低于3的整式

  15、多項式(xyz2—4yz—1)+(—3xy+z2xy—3)—(2xyz2+xy)的值()

  A、與x、y、z均有關(guān)

  B、與x有關(guān),而與y、z無關(guān)

  C、與x、y有關(guān),而與z無關(guān)

  D、與x、y、z均無關(guān)

  16、已知a=20xxx+20xx,b=20xxx+20xx,c=20xxx+20xx,那么(a—b)2+(b—c)2+(c—a)2的值等于()

  A、4 B、6 C、8 D、10

  17、當(dāng)x=1時,代數(shù)式mx3+nx+1的值為20xx,則當(dāng)x=—1時,代數(shù)式mx3+nx+1的值為()

  A、—20xx B、—20xx C、—20xx D、—20xx

  18、若M=3a2—2ab—4b2,N=4a2+5ab—b2,則8a2—13ab—15b2等于()

  A、2M—N B、3M—2N C、4M—N D、2M—3N

  19、把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為m cm,寬為n cm)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示。則圖②中兩塊陰影部分的周長和是()

  A、4m cm B、4n cm

  C、2(m+n)cm D、4(m—n)cm

初一數(shù)學(xué)上冊的教案14

  一、學(xué)習(xí)目標(biāo)

  (1)在具體情境中進(jìn)一步理解字母表示數(shù)的意義,通過判斷,并理解代數(shù)式的意義。

  (2) 初步掌握列代數(shù)式的方法,能根據(jù)要求正確列出相應(yīng)的代數(shù)式。

  (3)通過學(xué)習(xí),培養(yǎng)學(xué)生正確規(guī)范的數(shù)學(xué)語言表達(dá)能力。

  二、學(xué)習(xí)重點難點

  代數(shù)式的意義以及正確地列出代數(shù)式。

  三、學(xué)習(xí)過程

  1.(1)我們知道用字母可以表示數(shù),請你填空。

 、倨吣昙壱话嘤心猩20人,女生n人,那么共有學(xué)生_________人。

 、谫I蘋果s千克用了4元錢,買1千克蘋果需要________元。

 、坶L方形的長和寬分別是a厘米和b厘米,正方形的邊長是c厘米,長方形與正方形面積的和是_______。

  (2) 上述各問題中出現(xiàn)的如20+n、 、4n、(ab+c2)以及以前學(xué)習(xí)的n-m、2(a+b)、ab+ac等式子,都稱為代數(shù)式。

  (3)指出下列哪些是代數(shù)式:_______________________ (填序號)

  (1) m+5 (2)2x-y+1 (3) 2+3+5 (4) 3

  (5) (m-5n)2 (6) abc (7)a (8) 2+x=3

  2.(1)例1 填空:

 、偌讛(shù)用a表示,乙數(shù)比甲數(shù)大3,那么乙數(shù)是______________.

 、诩讛(shù)用a表示,甲、乙兩數(shù)的和為10,那么乙數(shù)是______________.

 、奂讛(shù)用a表示,甲數(shù)是乙數(shù)的5倍,那么乙數(shù)是______________.

 、芗讛(shù)用a表示, 乙數(shù)比甲數(shù)的平方少2,那么乙數(shù)是______________.

  ⑤長方形的長和寬分別為a cm、b cm .則該長方形的周長為________cm

  (1)自主歸納。 結(jié)合上面所有練習(xí)中出現(xiàn)的問題,能否總結(jié)出代數(shù)式的書寫格式?

  (2)下列代數(shù)式中符合書寫要求的是________ ,并說明理由。

  (1)x×y×2 (2) a + b 厘米 (3) 2(b-a) (4) (a + b) ÷c (4.像“x的3倍與y的2倍的和”、“x與5的差的3倍”等用文字表述數(shù)量關(guān)系的語言稱為自然語言(或普通語言);

  像3x+2y與3(x-5)等用代數(shù)式表述數(shù)量關(guān)系的語言稱為數(shù)學(xué)語言。

  5.將下列代數(shù)式用自然語言表示: (1) (a+b)2 (2) a2 -b2

  6.請同學(xué)們將下面的'代數(shù)式賦予它實際意義。a-b ___________4x_________________________

  四、課時小結(jié):

  這節(jié)課我學(xué)會了: 存在問題的地方:

  五、課堂檢測

  1.列代數(shù)式表示(注意規(guī)范書寫)

  ① x的 與a 的和是____________;② a,b?數(shù)和的平方減去a、b兩數(shù)的立方差____________;

 、 長方形的周長為20cm,它的寬為xcm,那么它的面積為____________ ;

 、 某商品的利潤為a元,利潤率為1

  《3.2代數(shù)式》測試

  3.(題型三)某汽車的油箱里儲油20 L,如果該汽車每行駛1 km耗油0.04 L,那么當(dāng)汽車行駛n(n≤500)km時,油箱中還剩汽油______L.

  4.(題型二)已知x2+x-1=0 ,則3x2+3x-5=________.

  《3.2第2課時代數(shù)式求值》同步練習(xí)

  解題突破

  ⑤根據(jù)設(shè)計的程序進(jìn)行計算,找到循環(huán)的規(guī)律,根據(jù)規(guī)律推導(dǎo)計算.

  命題點 3 利用整體法求值 [熱度:96%]

  10.⑥已知-x+2y=5,則5(x-2y)2-3(x-2y)-60的值是(  )

  A.80 B.10 C.210 D.40

  解題突破

  ⑥先通過改變符號變換已知代數(shù)式,再利用整體代入法進(jìn)行計算.

初一數(shù)學(xué)上冊的教案15

  教學(xué)目標(biāo):

  1、明白生活中存在著無數(shù)表示相反意義的量,能舉例說明;

  2、能體會引進(jìn)負(fù)數(shù)的必要性和意義,建立正數(shù)和負(fù)數(shù)的數(shù)感。

  重點:通過列舉現(xiàn)實世界中的“相反意義的量”的例子來引進(jìn)正數(shù)和負(fù)數(shù),要求學(xué)生理解正數(shù)和負(fù)數(shù)的意義,為以后通過實例引進(jìn)有理數(shù)的大小比較、加法和乘法法則打基礎(chǔ)。

  難點:對負(fù)數(shù)的意義的理解。

  教學(xué)過程:

  一、知識導(dǎo)向:本節(jié)課是一個從小學(xué)過渡的知識點,主要是要抓緊在數(shù)范圍上擴(kuò)充,對引進(jìn)“負(fù)數(shù)”這一概念的必要性及意義的理解。

  二、新課拆析:1、回顧小學(xué)中有關(guān)數(shù)的范圍及數(shù)的分類,指出小學(xué)中的“數(shù)”是為了滿足生產(chǎn)和生活的'需要而產(chǎn)生發(fā)展起來的。如:0,1,2,3,…,,

  2、能讓學(xué)生舉例出更多的有關(guān)生活中表示相反意義的量,能發(fā)現(xiàn)事物之間存在的對立面。

  如:汽車向東行駛3千米和向西行駛2千米

  溫度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米; 3、上面所列舉的表示相反意義量,我們也許就會發(fā)現(xiàn):如果只用原來所學(xué)過的數(shù)很難區(qū)分具有相反意義的量。

  一般地,對于具有相反意義的量,我們可把其中一種意義的量規(guī)定為正的,用過去學(xué)過的數(shù)表示;把與它意義相反的量規(guī)定為負(fù)的,用過去學(xué)過的數(shù)(零除外)前面放上一個“—”號來表示。

  如:在表示溫度時,通常規(guī)定零上為“正”,零下為“負(fù)”即零上10°C表示為10°C,零下5°C表示為-5°C概括:我們把這一種新數(shù),叫做負(fù)數(shù),如:-3,-45,…過去學(xué)過的那些數(shù)(零除外)叫做正數(shù),如:1,2.2…零既不是正數(shù),也不是負(fù)數(shù)例:下面各數(shù)中,哪些數(shù)是正數(shù),哪些數(shù)是負(fù)數(shù),1,2.3,-5.5,68,-,0,-11,+123,…

  三、階梯訓(xùn)練:P18練習(xí):1,2,3,4。

  四、知識小結(jié):

  從本節(jié)課所學(xué)的內(nèi)容中,應(yīng)能從數(shù)的角度來區(qū)分小學(xué)與初中的異同點,通過運用發(fā)現(xiàn)相反意義量,能理解引進(jìn)“負(fù)數(shù)”的必要性及其意義。

  五、作業(yè)鞏固:

  1、每個同學(xué)分別舉出5個生活中表示相反意義量的的例子;并用正、負(fù)數(shù)來表示; 2、分別舉出幾個正數(shù)與負(fù)數(shù)(最少6個)。 3、P20習(xí)題2.1:1題。

【初一數(shù)學(xué)上冊的教案】相關(guān)文章:

初一數(shù)學(xué)教案上冊09-26

初一數(shù)學(xué)上冊教案12-12

初一數(shù)學(xué)上冊的教案10-11

初一數(shù)學(xué)上冊教案(精選10篇)06-29

初一上冊數(shù)學(xué)《有理數(shù)》教案12-06

初一上冊數(shù)學(xué)《正數(shù)和負(fù)數(shù)》教案02-14

初一上冊數(shù)學(xué)《有理數(shù)》教案12-09

代數(shù)式的值蘇教版數(shù)學(xué)初一上冊教案10-14

初一上冊數(shù)學(xué)《有理數(shù)》教案優(yōu)秀03-01