- 《平面向量的數(shù)量積》 推薦度:
- 相關(guān)推薦
《平面向量的數(shù)量積》
《平面向量的數(shù)量積》1
一:說教材
平面向量的數(shù)量積是兩向量之間的乘法,而平面向量的坐標表示把向量之間的運算轉(zhuǎn)化為數(shù)之間的運算。本節(jié)內(nèi)容是在平面向量的坐標表示以及平面向量的數(shù)量積及其運算律的基礎(chǔ)上,介紹了平面向量數(shù)量積的坐標表示,平面兩點間的距離公式,和向量垂直的坐標表示的充要條件。為解決直線垂直問題,三角形邊角的有關(guān)問題提供了很好的辦法。本節(jié)內(nèi)容也是全章重要內(nèi)容之一。
二:說學(xué)習(xí)目標和要求
通過本節(jié)的學(xué)習(xí),要讓學(xué)生掌握
。1):平面向量數(shù)量積的坐標表示。
。2):平面兩點間的距離公式。
。3):向量垂直的坐標表示的充要條件。
以及它們的一些簡單應(yīng)用,以上三點也是本節(jié)課的重點,本節(jié)課的難點是向量垂直的坐標表示的充要條件以及它的靈活應(yīng)用。
三:說教法
在教學(xué)過程中,我主要采用了以下幾種教學(xué)方法:
。1)啟發(fā)式教學(xué)法
因為本節(jié)課重點的坐標表示公式的推導(dǎo)相對比較容易,所以這節(jié)課我準備讓學(xué)生自行推導(dǎo)出兩個向量數(shù)量積的坐標表示公式,然后引導(dǎo)學(xué)生發(fā)現(xiàn)幾個重要的結(jié)論:如模的計算公式,平面兩點間的距離公式,向量垂直的坐標表示的充要條件。
(2)講解式教學(xué)法
主要是講清概念,解除學(xué)生在概念理解上的疑惑感;例題講解時,演示解題過程!
主要輔助教學(xué)的手段(powerpoint)
。3)討論式教學(xué)法
主要是通過學(xué)生之間的相互交流來加深對較難問題的理解,提高學(xué)生的自學(xué)能力和發(fā)現(xiàn)、分析、解決問題以及創(chuàng)新能力。
四:說學(xué)法
學(xué)生是課堂的主體,一切教學(xué)活動都要圍繞學(xué)生展開,借以誘發(fā)學(xué)生的學(xué)習(xí)興趣,增強課堂上和學(xué)生的交流,從而達到及時發(fā)現(xiàn)問題,解決問題的目的。通過精講多練,充分調(diào)動學(xué)生自主學(xué)習(xí)的積極性。如讓學(xué)生自己動手推導(dǎo)兩個向量數(shù)量積的坐標公式,引導(dǎo)學(xué)生推導(dǎo)4個重要的結(jié)論!并在具體的問題中,讓學(xué)生建立方程的思想,更好的解決問題!
五:說教學(xué)過程
這節(jié)課我準備這樣進行:
首先提出問題:要算出兩個非零向量的數(shù)量積,我們需要知道哪些量?
繼續(xù)提出問題:假如知道兩個非零向量的坐標,是不是可以用這兩個向量的坐標來表示這兩個向量的數(shù)量積呢?
引導(dǎo)學(xué)生自己推導(dǎo)平面向量數(shù)量積的坐標表示公式,在此公式基礎(chǔ)上還可以引導(dǎo)學(xué)生得到以下幾個重要結(jié)論:
(1) 模的計算公式
。2)平面兩點間的距離公式。
。3)兩向量夾角的余弦的坐標表示
。4)兩個向量垂直的標表示的.充要條件
第二部分是例題講解,通過例題講解,使學(xué)生更加熟悉公式并會加以應(yīng)用。
例題1是書上122頁例1,此題是直接用平面向量數(shù)量積的坐標公式的題,目的是讓學(xué)生熟悉這個公式,并在此題基礎(chǔ)上,求這兩個向量的夾角?目的是讓學(xué)生熟悉兩向量夾角的余弦的坐標表示公式例題2是直接證明直線垂直的題,雖然比較簡單,但體現(xiàn)了一種重要的證明方法,這種方法要讓學(xué)生掌握,其實這一例題也是兩個向量垂直坐標表示的充要條件的一個應(yīng)用:即兩個向量的數(shù)量積是否為零是判斷相應(yīng)的兩條直線是否垂直的重要方法之一。
例題3是在例2的基礎(chǔ)上稍微作了一下改變,目的是讓學(xué)生會應(yīng)用公式來解決問題,并讓學(xué)生在這要有建立方程的思想。
再配以練習(xí),讓學(xué)生能熟練的應(yīng)用公式,掌握今天所學(xué)內(nèi)容。
然后是學(xué)習(xí)小結(jié)(由學(xué)生完成)
最后作業(yè)布置!
《平面向量的數(shù)量積》2
平面向量的數(shù)量積是一種非常重要的運算,同其線性運算一樣,既有其深刻的數(shù)學(xué)背景,也有其現(xiàn)實的物理背景。本節(jié)課從總體上說是一節(jié)概念教學(xué),依據(jù)數(shù)學(xué)課程改革應(yīng)關(guān)注知識的發(fā)生和發(fā)展過程的理念,在數(shù)量積概念的引入過程中,我從數(shù)學(xué)和物理兩個角度創(chuàng)設(shè)問題情景,使學(xué)生明白研究這種運算不僅是數(shù)學(xué)本身發(fā)展的必然,更是研究客觀世界的需要,從而產(chǎn)生強烈的求知欲望。相對于線性運算而言,數(shù)量積的結(jié)果發(fā)生了本質(zhì)的變化,為了讓學(xué)生理解這一點,我首先安排讓學(xué)生討論影響數(shù)量積結(jié)果的因素并完成表格,其次將數(shù)量積的幾何意義提前,這樣使學(xué)生從代數(shù)和幾何兩個方面對數(shù)量積的“質(zhì)變”特征有了更加充分的認識。通過嘗試練習(xí),一方面使學(xué)生嘗試計算數(shù)量積,另一方面使學(xué)生理解數(shù)量積的物理意義,同時也為數(shù)量積的.性質(zhì)埋下伏筆。
數(shù)量積的性質(zhì)和運算律是數(shù)量積概念的延伸,教材中這兩方面的內(nèi)容都是以探究的形式出現(xiàn),為了讓學(xué)生很好的完成這兩個探究活動,我始終按照先創(chuàng)設(shè)一定的情景,讓學(xué)生去發(fā)現(xiàn)結(jié)論,再由學(xué)生或師生共同完成證明。比如數(shù)量積的運算性質(zhì)是將嘗試練習(xí)的結(jié)論推廣得到,數(shù)量積的運算律則是通過和實數(shù)乘法相類比得到,這樣不僅使學(xué)生感到親切自然,同時也培養(yǎng)了學(xué)生由特殊到一般的思維品質(zhì)和類比創(chuàng)新的意識。在應(yīng)用這個環(huán)節(jié)中,對教材中提供的四個例題,我重點講解例2和例4,例1和例3則由學(xué)生獨立完成,這樣既加強了學(xué)生的練習(xí),同時也便于通過觀察、問答等方式對學(xué)生的掌握情況做出適當(dāng)?shù)脑u價。達到提高認識,形成體系的目的,同時也為下一節(jié)課的內(nèi)容做好鋪墊,不斷激發(fā)學(xué)生的求知欲。
《平面向量的數(shù)量積》3
。1)讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用過程
高中數(shù)學(xué)教學(xué)應(yīng)體現(xiàn)知識的來龍去脈,創(chuàng)設(shè)問題情景,建立數(shù)學(xué)模型,讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用,可以更好的理解數(shù)學(xué)概念、結(jié)論的形成過程,體會蘊含在其中的思想方法,增強學(xué)好數(shù)學(xué)的愿望和信心。對于抽象數(shù)學(xué)概念的教學(xué),要關(guān)注概念的實際背景與形成過程,幫助學(xué)生克服機械記憶概念的學(xué)習(xí)方式
(2)鼓勵學(xué)生自主探索、自主學(xué)習(xí)
教師是學(xué)生學(xué)習(xí)的引導(dǎo)者、組織者,教師在教學(xué)中的作用必須以確定學(xué)生主體地位為前提,教學(xué)過程中要發(fā)揚民主,要鼓勵學(xué)生質(zhì)疑,提倡獨立思考、動手實踐、自主探索、閱讀自學(xué)等學(xué)習(xí)方式。對于教學(xué)中問題情境的設(shè)計、教學(xué)過程的展開、練習(xí)的安排等,要盡可能地讓所有學(xué)生都能主動參與,提出各自解決問題的方案,并引導(dǎo)學(xué)生在與他人的`交流中選擇合適的策略,使學(xué)生切實體會到自主探索數(shù)學(xué)的規(guī)律和問題解決是學(xué)好數(shù)學(xué)的有效途徑
(3)用教材教,而不是教教材
向量的數(shù)量積這一節(jié)新課標規(guī)定在2課時內(nèi)完成2.3“平面向量的數(shù)量積”3小節(jié)的教學(xué)內(nèi)容,為了貫徹新課標的精神,體現(xiàn)新課程理念,我們做了如下的調(diào)整:把“兩個向量的夾角”這個概念放到2.1.1“向量的概念”中講,把向量在軸上的正射影這個概念放到2.2“向量的分解與向量的坐標運算”,平面向量的數(shù)量積的定義及平面向量的數(shù)量積的運算律到第一課時,把平面向量的數(shù)量積的性質(zhì)及平面向量的數(shù)量積坐標運算與度量公式放到第二課時。
我感覺不足的有:
。1)教師應(yīng)該如何準確的提出問題
在教學(xué)中,我提出問題,平面向量的數(shù)量積的定義中你認為應(yīng)注意哪些問題?這個問題問的不夠具體,學(xué)生不知道給如何回答。其實這個問題,我也曾考慮過該如何問,只是沒有找到更合適的提問方法,能力有待加強。(2)教師如何把握“收”與“放”的問題
何時放手讓學(xué)生思考,何時教師引導(dǎo)學(xué)生,何時教師講授,這是個值得思考的問題。
。3)教師要點撥到位
在學(xué)生出現(xiàn)問題后,教師要及時點評加以總結(jié),要重視思維的提升,提高學(xué)生的數(shù)學(xué)能力和素質(zhì)
《平面向量的數(shù)量積》4
尊敬的各位評委、各位老師:
大家好!
今天我說課的題目是《平面向量的數(shù)量積》。下面我將從四個方面闡述我對本節(jié)課的分析和設(shè)計。
第一部分:教學(xué)內(nèi)容分析:
1、教材的地位及作用:
將平面向量引入高中課程,是現(xiàn)行數(shù)學(xué)教材的重要特色之一。由于向量既能體現(xiàn)“形”的直觀位置特征,又具有“數(shù)”的良好運算性質(zhì),是數(shù)形結(jié)合和轉(zhuǎn)換的橋梁。而這一切之所以能夠?qū)崿F(xiàn),平面向量的數(shù)量積功不可沒!镀矫嫦蛄康臄(shù)量積》是高一數(shù)學(xué)下冊第五章第六節(jié)的內(nèi)容。平面向量數(shù)量積是中學(xué)數(shù)學(xué)的一個重要概念。它的性質(zhì)很多,應(yīng)用很廣,是后面學(xué)習(xí)的重要基礎(chǔ)。本課是第一課時,學(xué)生對概念的理解尤為重要。
2、教學(xué)目標的設(shè)定:
。1)知識目標:
平面向量數(shù)量積的定義及初步運用。
。2)能力目標:
通過對平面向量數(shù)量積定義的剖析,培養(yǎng)學(xué)生分析問題發(fā)現(xiàn)問題能力,使學(xué)生的思維能力得到訓(xùn)練。
。3)情感目標:
通過本節(jié)課的學(xué)習(xí),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的.興趣,體會學(xué)習(xí)的快樂。
3、教學(xué)重點:平面向量的數(shù)量積定義。
4、教學(xué)難點:平面向量的數(shù)量積定義及平面向量數(shù)量積的運用。
第二部分:教法分析:
采用啟發(fā)引導(dǎo)式與講練相結(jié)合,并借助多媒體教學(xué)手段,使學(xué)生理解平面向量數(shù)量積的定義,理解定義之后引導(dǎo)學(xué)生推導(dǎo)數(shù)量積的性質(zhì),通過例題和練習(xí)加深學(xué)生對平面向量數(shù)量積定義的認識,初步掌握平面向量數(shù)量積定義的運用。
《平面向量的數(shù)量積》5
說課內(nèi)容:普通高中課程標準實驗教科書(人教A版)《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”的第一課時---平面向量數(shù)量積的物理背景及其含義。
下面,我從背景分析、教學(xué)目標設(shè)計、課堂結(jié)構(gòu)設(shè)計、教學(xué)過程設(shè)計、教學(xué)媒體設(shè)計及教學(xué)評價設(shè)計六個方面對本節(jié)課的思考進行說明。
一、 背景分析
1、學(xué)習(xí)任務(wù)分析
平面向量的數(shù)量積是繼向量的線性運算之后的又一重要運算,也是高中數(shù)學(xué)的一個重要概念,在數(shù)學(xué)、物理等學(xué)科中應(yīng)用十分廣泛。本節(jié)內(nèi)容教材共安排兩課時,其中第一課時主要研究數(shù)量積的概念,第二課時主要研究數(shù)量積的坐標運算,本節(jié)課是第一課時。
本節(jié)課的主要學(xué)習(xí)任務(wù)是通過物理中“功”的事例抽象出平面向量數(shù)量積的概念,在此基礎(chǔ)上探究數(shù)量積的性質(zhì)與運算律,使學(xué)生體會類比的思想方法,進一步培養(yǎng)學(xué)生的抽象概括和推理論證的能力。其中數(shù)量積的概念既是對物理背景的抽象,又是研究性質(zhì)和運算律的基礎(chǔ)。同時也因為在這個概念中,既有長度又有角度,既有形又有數(shù),是代數(shù)、幾何與三角的最佳結(jié)合點,不僅應(yīng)用廣泛,而且很好的體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,使得數(shù)量積的概念成為本節(jié)課的核心概念,自然也是本節(jié)課教學(xué)的重點。
2、學(xué)生情況分析
學(xué)生在學(xué)習(xí)本節(jié)內(nèi)容之前,已熟知了實數(shù)的運算體系,掌握了向量的概念及其線性運算,具備了功等物理知識,并且初步體會了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發(fā),在與實數(shù)運算類比的基礎(chǔ)上研究性質(zhì)和運算律。這為學(xué)生學(xué)習(xí)數(shù)量積做了很好的鋪墊,使學(xué)生倍感親切。但也正是這些干擾了學(xué)生對數(shù)量積概念的理解,一方面,相對于線性運算而言,數(shù)量積的結(jié)果發(fā)生了本質(zhì)的變化,兩個有形有數(shù)的向量經(jīng)過數(shù)量積運算后,形卻消失了,學(xué)生對這一點是很難接受的;另一方面,由于受實數(shù)乘法運算的影響,也會造成學(xué)生對數(shù)量積理解上的偏差,特別是對性質(zhì)和運算律的理解。因而本節(jié)課教學(xué)的難點數(shù)量積的概念。
二、 教學(xué)目標設(shè)計
《普通高中數(shù)學(xué)課程標準(實驗)》 對本節(jié)課的要求有以下三條:
(1)通過物理中“功”等事例,理解平面向量數(shù)量積的含義及其物理意義。
(2)體會平面向量的數(shù)量積與向量投影的關(guān)系。
(3)能用運數(shù)量積表示兩個向量的夾角,會用數(shù)量積判斷兩個平面向量的垂直關(guān)系。
從以上的背景分析可以看出,數(shù)量積的概念既是本節(jié)課的重點,也是難點。為了突破這一難點,首先無論是在概念的引入還是應(yīng)用過程中,物理中“功”的實例都發(fā)揮了重要作用。其次,作為數(shù)量積概念延伸的性質(zhì)和運算律,不僅能夠使學(xué)生更加全面深刻地理解概念,同時也是進行相關(guān)計算和判斷的理論依據(jù)。最后,無論是數(shù)量積的性質(zhì)還是運算律,都希望學(xué)生在類比的基礎(chǔ)上,通過主動探究來發(fā)現(xiàn),因而對培養(yǎng)學(xué)生的抽象概括能力、推理論證能力和類比思想都無疑是很好的'載體。
綜上所述,結(jié)合“課標”要求和學(xué)生實際,我將本節(jié)課的教學(xué)目標定為:
1、了解平面向量數(shù)量積的物理背景,理解數(shù)量積的含義及其物理意義;
2、體會平面向量的數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的性質(zhì)和運算律,
并能運用性質(zhì)和運算律進行相關(guān)的運算和判斷;
3、體會類比的數(shù)學(xué)思想和方法,進一步培養(yǎng)學(xué)生抽象概括、推理論證的能力。
三、課堂結(jié)構(gòu)設(shè)計
本節(jié)課從總體上講是一節(jié)概念教學(xué),依據(jù)數(shù)學(xué)課程改革應(yīng)關(guān)注知識的發(fā)生和發(fā)展過程的理念,結(jié)合本節(jié)課的知識的邏輯關(guān)系,我按照以下順序安排本節(jié)課的教學(xué):
即先從數(shù)學(xué)和物理兩個角度創(chuàng)設(shè)問題情景,通過歸納和抽象得到數(shù)量積的概念,在此基礎(chǔ)上研究數(shù)量積的性質(zhì)和運算律,使學(xué)生進一步加深對概念的理解,然后通過例題和練習(xí)使學(xué)生鞏固概念,加深印象,最后通過課堂小結(jié)提高學(xué)生認識,形成知識體系。
四、 教學(xué)媒體設(shè)計
和“大綱”教材相比,“課標”教材在本節(jié)課的內(nèi)容安排上,雖然將向量的夾角在“平面向量基本定理”一節(jié)提前做了介紹,但卻將原來分兩節(jié)課完成的內(nèi)容合并成一節(jié),相比較而言本節(jié)課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的完成,順利實現(xiàn)本節(jié)課的教學(xué)目標,考慮到本節(jié)課的實際特點,在教學(xué)媒體的使用上,我的設(shè)想主要有以下兩點:
1、制作高效實用的電腦多媒體課件,主要作用是改變相關(guān)內(nèi)容的呈現(xiàn)方式,以此來節(jié)約課時,增加課堂容量。
2、設(shè)計科學(xué)合理的板書(見下),一方面使學(xué)生加深對主要知識的印象,另一方面使學(xué)生清楚本節(jié)內(nèi)容知識間的邏輯關(guān)系,形成知識網(wǎng)絡(luò)。
平面向量數(shù)量積的物理背景及其含義
一、 數(shù)量積的概念 二、數(shù)量積的性質(zhì) 四、應(yīng)用與提高
1、 概念: 例1:
2、 概念強調(diào) (1)記法 例2:
(2)“規(guī)定” 三、數(shù)量積的運算律 例3:
3、幾何意義:
4、物理意義:
五、 教學(xué)過程設(shè)計
課標指出:數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進行學(xué)習(xí)活動的過程,是教師和學(xué)生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學(xué),本節(jié)課我主要安排以下六個活動:
活動一:創(chuàng)設(shè)問題情景,激發(fā)學(xué)習(xí)興趣
正如教材主編寄語所言,數(shù)學(xué)是自然的,而不是強加于人的。平面向量的數(shù)量積這一重要概念,和向量的線性運算一樣,也有其數(shù)學(xué)背景和物理背景,為了體現(xiàn)這一點,我設(shè)計以下幾個問題:
問題1:我們已經(jīng)研究了向量的哪些運算?這些運算的結(jié)果是什么?
問題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?
期望學(xué)生回答:物理模型→概念→性質(zhì)→運算律→應(yīng)用
問題3:如圖所示,一物體在力F的作用下產(chǎn)生位移S,
(1)力F所做的功W= 。
(2)請同學(xué)們分析這個公式的特點:
W(功)是 量,
F(力)是 量,
S(位移)是 量,
α是 。
問題1的設(shè)計意圖在于使學(xué)生了解數(shù)量積的數(shù)學(xué)背景,讓學(xué)生明白本節(jié)課所要研究的數(shù)量積與向量的加法、減法及數(shù)乘一樣,都是向量的運算,但與向量的線性運算相比,數(shù)量積運算又有其特殊性,那就是其結(jié)果發(fā)生了本質(zhì)的變化。
問題2的設(shè)計意圖在于使學(xué)生在與向量加法類比的基礎(chǔ)上明了本節(jié)課的研究方法和順序,為教學(xué)活動指明方向。
問題3的設(shè)計意圖在于使學(xué)生了解數(shù)量積的物理背景,讓學(xué)生知道,我們研究數(shù)量積絕不僅僅是為了數(shù)學(xué)自身的完善,而是有其客觀背景和現(xiàn)實意義的,從而產(chǎn)生了進一步研究這種新運算的愿望。同時,也為抽象數(shù)量積的概念做好鋪墊。
活動二:探究數(shù)量積的概念
1、概念的抽象
在分析“功”的計算公式的基礎(chǔ)上提出問題4
問題4:你能用文字語言來表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結(jié)果又該如何表述?
學(xué)生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個向量的大小及其夾角余弦的乘積。這樣,學(xué)生事實上已經(jīng)得到數(shù)量積概念的文字表述了,在此基礎(chǔ)上,我進一步明晰數(shù)量積的概念。
2、概念的明晰
已知兩個非零向量
與
,它們的夾角為
,我們把數(shù)量 ︱
︱·︱
︱cos
叫做
與
的數(shù)量積(或內(nèi)積),記作:
·
,即:
·
= ︱
︱·︱
︱cos
在強調(diào)記法和“規(guī)定”后 ,為了讓學(xué)生進一步認識這一概念,提出問題5
問題5:向量的數(shù)量積運算與線性運算的結(jié)果有什么不同?影響數(shù)量積大小的因素有哪些?并完成下表:
角
的范圍0°≤
<90°
=90°0°<
≤180°
·
的符號
通過此環(huán)節(jié)不僅使學(xué)生認識到數(shù)量積的結(jié)果與線性運算的結(jié)果有著本質(zhì)的不同,而且認識到向量的夾角是決定數(shù)量積結(jié)果的重要因素,為下面更好地理解數(shù)量積的性質(zhì)和運算律做好鋪墊。
3、探究數(shù)量積的幾何意義
這個問題教材是這樣安排的:在給出向量數(shù)量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結(jié)論的形式呈現(xiàn)給學(xué)生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學(xué)生自己歸納得出,所以做了調(diào)整。為此,我首先給出給出向量投影的概念,然后提出問題5。
如圖,我們把│
│cos
(│
│cos
)叫做向量
在
方向上(
在
方向上)的投影,記做:OB1=│
│cos
問題6:數(shù)量積的幾何意義是什么?
這樣做不僅讓學(xué)生從“形”的角度重新認識數(shù)量積的概念,從中體會數(shù)量積與向量投影的關(guān)系,同時也更符合知識的連貫性,而且也節(jié)約了課時。
4、研究數(shù)量積的物理意義
數(shù)量積的概念是由物理中功的概念引出的,學(xué)習(xí)了數(shù)量積的概念后,學(xué)生就會明白功的數(shù)學(xué)本質(zhì)就是力與位移的數(shù)量積。為此,我設(shè)計以下問題 一方面使學(xué)生嘗試計算數(shù)量積,另一方面使學(xué)生理解數(shù)量積的物理意義,同時也為數(shù)量積的性質(zhì)埋下伏筆。
問題7:
(1) 請同學(xué)們用一句話來概括功的數(shù)學(xué)本質(zhì):功是力與位移的數(shù)量積 。
(2)嘗試練習(xí):一物體質(zhì)量是10千克,分別做以下運動:
、、在水平面上位移為10米;
、凇⒇Q直下降10米;
、、豎直向上提升10米;
④、沿傾角為30度的斜面向上運動10米;
分別求重力做的功。
活動三:探究數(shù)量積的運算性質(zhì)
1、性質(zhì)的發(fā)現(xiàn)
教材中關(guān)于數(shù)量積的三條性質(zhì)是以探究的形式出現(xiàn)的,為了很好地完成這一探究活動,在完成上述練習(xí)后,我不失時機地提出問題8:
(1)將嘗試練習(xí)中的① ② ③的結(jié)論推廣到一般向量,你能得到哪些結(jié)論?
(2)比較︱
·
︱與︱
︱×︱
︱的大小,你有什么結(jié)論?
在學(xué)生討論交流的基礎(chǔ)上,教師進一步明晰數(shù)量積的性質(zhì),然后再由學(xué)生利用數(shù)量積的定義給予證明,完成探究活動。
2、明晰數(shù)量積的性質(zhì)
3、性質(zhì)的證明
這樣設(shè)計體現(xiàn)了教師只是教學(xué)活動的引領(lǐng)者,而學(xué)生才是學(xué)習(xí)活動的主體,讓學(xué)生成為學(xué)習(xí)的研究者,不斷地體驗到成功的喜悅,激發(fā)學(xué)生參與學(xué)習(xí)活動的熱情,不僅使學(xué)生獲得了知識,更培養(yǎng)了學(xué)生由特殊到一般的思維品質(zhì)。
活動四:探究數(shù)量積的運算律
1、運算律的發(fā)現(xiàn)
關(guān)于運算律,教材仍然是以探究的形式出現(xiàn),為此,首先提出問題9
問題9:我們學(xué)過了實數(shù)乘法的哪些運算律?這些運算律對向量是否也適用?
通過此問題主要是想使學(xué)生在類比的基礎(chǔ)上,猜測提出數(shù)量積的運算律。
學(xué)生可能會提出以下猜測: ①
·
=
·
、(
·
)
=
(
·
) ③(
+
)·
=
·
+
·
猜測①的正確性是顯而易見的。
關(guān)于猜測②的正確性,我提示學(xué)生思考下面的問題:
猜測②的左右兩邊的結(jié)果各是什么?它們一定相等嗎?
學(xué)生通過討論不難發(fā)現(xiàn),猜測②是不正確的。
這時教師在肯定猜測③的基礎(chǔ)上明晰數(shù)量積的運算律:
2、明晰數(shù)量積的運算律
3、證明運算律
學(xué)生獨立證明運算律(2)
我把運算運算律(2)的證明交給學(xué)生完成,在證明時,學(xué)生可能只考慮到λ>0的情況,為了幫助學(xué)生完善證明,提出以下問題:
當(dāng)λ<0時,向量
與λ
,
與λ
的方向 的關(guān)系如何?此時,向量λ
與
及
與λ
的夾角與向量
與
的夾角相等嗎?
師生共同證明運算律(3)
運算律(3)的證明對學(xué)生來說是比較困難的,為了節(jié)約課時,這個證明由師生共同完成,我想這也是教材的本意。
在這個環(huán)節(jié)中,我仍然是首先為學(xué)生創(chuàng)設(shè)情景,讓學(xué)生在類比的基礎(chǔ)上進行猜想歸納,然后教師明晰結(jié)論,最后再完成證明,這樣做不僅培養(yǎng)了學(xué)生推理論證的能力,同時也增強了學(xué)生類比創(chuàng)新的意識,將知識的獲得和能力的培養(yǎng)有機的結(jié)合在一起。
活動五:應(yīng)用與提高
例1、(師生共同完成)已知︱
︱=6,︱
︱=4,
與
的夾角為60°,求
(
+2
)·(
-3
),并思考此運算過程類似于哪種運算?
例2、(學(xué)生獨立完成)對任意向量
,b是否有以下結(jié)論:
(1)(
+
)2=
2+2
·
+
2
(2)(
+
)·(
-
)=
2—
2
例3、(師生共同完成)已知︱
︱=3,︱
︱=4, 且
與
不共線,k為何值時,向量
+k
與
-k
互相垂直?并思考:通過本題你有什么收獲?
本節(jié)教材共安排了四道例題,我根據(jù)學(xué)生實際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數(shù)量積的性質(zhì)和運算律的綜合應(yīng)用,教學(xué)時,我重點從對運算原理的分析和運算過程的規(guī)范書寫兩個方面加強示范。完成計算后,進一步提出問題:此運算過程類似于哪種運算?目的是想讓學(xué)生在類比多項式乘法的基礎(chǔ)上自己猜測提出例2給出的兩個公式,再由學(xué)生獨立完成證明,一方面這并不困難,另一方面培養(yǎng)了學(xué)生通過類比這一思維模式達到創(chuàng)新的目的。例3的主要作用是,在繼續(xù)鞏固性質(zhì)和運算律的同時,教給學(xué)生如何利用數(shù)量積來判斷兩個向量的垂直,是平面向量數(shù)量積的基本應(yīng)用之一,教學(xué)時重點給學(xué)生分析數(shù)與形的轉(zhuǎn)化原理。
為了使學(xué)生更好的理解數(shù)量積的含義,熟練掌握性質(zhì)及運算律,并能夠應(yīng)用數(shù)量積解決有關(guān)問題,再安排如下練習(xí):
1、 下列兩個命題正確嗎?為什么?
①、若
≠0,則對任一非零向量
,有
·
≠0.
、、若
≠0,
·
=
·
,則
=
.
2、已知△ABC中,
=
,
=
,當(dāng)
·
<0或
·
=0時,試判斷△ABC的形狀。
安排練習(xí)1的主要目的是,使學(xué)生在與實數(shù)乘法比較的基礎(chǔ)上全面認識數(shù)量積這一重要運算,
通過練習(xí)2使學(xué)生學(xué)會用數(shù)量積表示兩個向量的夾角,進一步感受數(shù)量積的應(yīng)用價值。
活動六:小結(jié)提升與作業(yè)布置
1、本節(jié)課我們學(xué)習(xí)的主要內(nèi)容是什么?
2、平面向量數(shù)量積的兩個基本應(yīng)用是什么?
3、我們是按照怎樣的思維模式進行概念的歸納和性質(zhì)的探究?在運算律的探究過程中,滲透了哪些數(shù)學(xué)思想?
4、類比向量的線性運算,我們還應(yīng)該怎樣研究數(shù)量積?
通過上述問題,使學(xué)生不僅對本節(jié)課的知識、技能及方法有了更加全面深刻的認識,同時也為下
一節(jié)做好鋪墊,繼續(xù)激發(fā)學(xué)生的求知欲。
布置作業(yè):
1、課本P121習(xí)題2.4A組1、2、3。
2、拓展與提高:
已知
與
都是非零向量,且
+3
與7
-5
垂直,
-4
與 7
-2
垂直求
與
的夾角。
在這個環(huán)節(jié)中,我首先考慮檢測全體學(xué)生是否都達到了“課標”的基本要求,因此安排了一組教材中的習(xí)題,目的是讓所有的學(xué)生繼續(xù)加深對數(shù)量積概念的理解和應(yīng)用,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。其次,為了能讓不同的學(xué)生在數(shù)學(xué)領(lǐng)域得到不同的發(fā)展,我又安排了一道有一定難度的問題供學(xué)有余力的同學(xué)選做。
六、教學(xué)評價設(shè)計
評價方式的轉(zhuǎn)變是新課程改革的一大亮點,課標指出:相對于結(jié)果,過程更能反映每個學(xué)生的發(fā)展變化,體現(xiàn)出學(xué)生成長的歷程。因此,數(shù)學(xué)學(xué)習(xí)的評價既要重視結(jié)果,也要重視過程。結(jié)合“課標”對數(shù)學(xué)學(xué)習(xí)的評價建議,對本節(jié)課的教學(xué)我主要通過以下幾種方式進行:
1、 通過與學(xué)生的問答交流,發(fā)現(xiàn)其思維過程,在鼓勵的基礎(chǔ)上,糾正偏差,并對其進行定
性的評價。
2、在學(xué)生討論、交流、協(xié)作時,教師通過觀察,就個別或整體參與活動的態(tài)度和表現(xiàn)做出評價,以此來調(diào)動學(xué)生參與活動的積極性。
3、 通過練習(xí)來檢驗學(xué)生學(xué)習(xí)的效果,并在講評中,肯定優(yōu)點,指出不足。
4、 通過作業(yè),反饋信息,再次對本節(jié)課做出評價,以便查漏補缺。
《平面向量的數(shù)量積》6
一、 教材分析
1.本課的地位及作用:平面向量數(shù)量積的坐標表示,就是運用坐標這一量化工具表達向量的數(shù)量積運算,為研究平面中的距離、垂直、角度等問題提供了全新的手段。它把向量的數(shù)量積與坐標運算兩個知識點緊密聯(lián)系起來,是全章重點之一。
2學(xué)生情況分析:在此之前學(xué)生已學(xué)習(xí)了平面向量的坐標表示和平面向量數(shù)量積概念及運算,但數(shù)量積是用長度和夾角這兩個概念來表示的,應(yīng)用起來不太方便,如何用坐標這一最基本、最常用的工具來表示數(shù)量積,使之應(yīng)用更方便,就是擺在學(xué)生面前的一個亟待解決的問題。因此,本節(jié)內(nèi)容的學(xué)習(xí)是學(xué)生認知發(fā)展和知識構(gòu)建的一個合情、合理的“生長點”。所以,本節(jié)課采取以學(xué)生自主完成為主,教師查漏補缺的教學(xué)方法。因此結(jié)合中學(xué)生的認知結(jié)構(gòu)特點和學(xué)生實際。我將本節(jié)教學(xué)目標確定為:
1、理解掌握平面向量數(shù)量積的坐標表達式,會進行數(shù)量積的運算。理解掌握向量的模、夾角等公式。能根據(jù)公式解決兩個向量的夾角、垂直等問題
2、經(jīng)歷根據(jù)平面向量數(shù)量積的意義探究其坐標表示的過程,體驗在此基礎(chǔ)上探究發(fā)現(xiàn)向量的模、夾角等重要的度量公式的成功樂趣,培養(yǎng)學(xué)生的探究能力、創(chuàng)新精神。
教學(xué)重點
平面向量數(shù)量積的坐標表示及應(yīng)用
教學(xué)難點
探究發(fā)現(xiàn)公式
二、 教學(xué)方法和手段
1教學(xué)方法:結(jié)合本節(jié)教材淺顯易懂,又有前面平面向量的數(shù)量積和向量的坐標表示等知識作鋪墊的內(nèi)容特點,兼顧高一學(xué)生已具備一定的數(shù)學(xué)思維能力和處理向量問題的方法的現(xiàn)狀,我主要采用“誘思探究教學(xué)法”,其核心是“誘導(dǎo)思維,探索研究”,其教學(xué)思想是“教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的原則,為此,我通過精心設(shè)置的一個個問題,激發(fā)學(xué)生的求知欲,積極的鼓勵學(xué)生的參與,給學(xué)生獨立思考的空間,鼓勵學(xué)生自主探索,最終在教師的指導(dǎo)下去探索發(fā)現(xiàn)問題,解決問題。在教學(xué)中,我適時的對學(xué)生學(xué)習(xí)過程給予評價,適當(dāng)?shù)脑u價,可以培養(yǎng)學(xué)生的自信心,合作交流的意識,更進一步地激發(fā)了學(xué)生的學(xué)習(xí)興趣,讓他們體驗成功的喜悅。
2教學(xué)手段:利用多媒體輔助教學(xué),可以加大一堂課的信息容量,極大提高學(xué)生的學(xué)習(xí)興趣。
三、 學(xué)法指導(dǎo)
改善學(xué)生的學(xué)習(xí)方式是高中數(shù)學(xué)課程追求的基本理念。獨立思考,自主探索,動手實踐,合作交流等都是學(xué)習(xí)數(shù)學(xué)的重要方式,這些方式有助于發(fā)揮學(xué)生學(xué)習(xí)主觀能動性,使學(xué)生的學(xué)習(xí)過程成為在教師引導(dǎo)下的“再創(chuàng)造”的過程。以激發(fā)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新潛能,幫助學(xué)生養(yǎng)成獨立思考,積極探索的習(xí)慣。為了實現(xiàn)這一目標,本節(jié)教學(xué)讓學(xué)生主動參與,讓學(xué)生動手,動口、動腦。通過思考、計算、歸納、推理,鼓勵學(xué)生多向思維,積極活動,勇于探索。具體體現(xiàn)在:1、通過提出問題,把問題的求解與探究貫穿整堂課,使學(xué)生在自主探究中發(fā)現(xiàn)了結(jié)論,推廣了命題,使學(xué)生感到成果是自己得到的,增強了成就感,培養(yǎng)了學(xué)生學(xué)好數(shù)學(xué)的'信心和良好的學(xué)習(xí)動機。2、通過數(shù)與形的充分挖掘,通過對向量平行與垂直條件的坐標表示的類比,培養(yǎng)了學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想,教給了學(xué)生類比聯(lián)想的記憶方法。
四、教學(xué)程序
本節(jié)課分為復(fù)習(xí)回顧、定理推導(dǎo)、引申推廣、例題講析、練習(xí)與小結(jié)五部分。
復(fù)習(xí)回顧部分通過兩個問題,復(fù)習(xí)了與本節(jié)內(nèi)容相關(guān)的數(shù)量積概念,為本節(jié)內(nèi)容的學(xué)習(xí)作了必要的鋪墊。
定理推導(dǎo)部分通過設(shè)問,引出尋求向量的數(shù)量積的坐標表示的必要性,引入課題,并引導(dǎo)學(xué)生應(yīng)用前述知識共同推導(dǎo)出數(shù)量積的坐標表示。
引申推廣部分,讓學(xué)生自主推導(dǎo)出向量的長度公式,向量垂直條件的坐標表示、夾角公式等三個結(jié)論,強化了學(xué)生的動手能力和自主探究能力。
例題講析,通過四道緊扣教材的例題的精講,突出了結(jié)論的應(yīng)用,也起到了示范作用。
練習(xí)及小結(jié):通過練習(xí)題驗收教學(xué)效果,突出訓(xùn)練主線,小結(jié)部分畫龍點睛,強調(diào)本節(jié)重點。再結(jié)合課后作業(yè),進一步實現(xiàn)本節(jié)課的教學(xué)目的。同時小結(jié)也體現(xiàn)主體性,由教師提出問題學(xué)生總結(jié)得出。
《平面向量的數(shù)量積》7
《2.4 平面向量的數(shù)量積》測試題
一、選擇題
1.已知向量滿足,且,則與的夾角為( ).
A. B. C. D.
考查目的:考查平面向量的數(shù)量積的意義.
答案:C.
解析:根據(jù)平面向量數(shù)量積的意義,及可得,.
2.已知向量,是不平行于軸的單位向量,且,則等于( ).
A. B. C. D.(1,0)
考查目的:考查平面向量數(shù)量積的坐標運算.
答案:B.
解析:利用排除法. ∵在D中,,∴D不合題意;∵在C中向量不是單位向量,∴也不符題意;∵A是向量會使得,同樣不合題意,答案只有選B.
3.(20xx四川理)設(shè)點M是線段BC的中點,點A在直線BC外,,,則( ).
A.8 B.4 C.2 D.1
考查目的:考查平面向量加、減法運算的幾何意義,以及數(shù)形結(jié)合思想.
答案:C.
解析:∵,∴是以A為直角頂點的直角三角形.又∵M是BC的中點,∴.
二、填空題
4.已知,則與方向相同的單位向量為 .
考查目的:考查方向相同的單位向量的求法和運算.
答案:.
解析:∵,∴與方向相同的單位向量.
5.已知:,與的'夾角為,則在方向上的投影為 .
考查目的:考查平面向量投影的概念與計算.
答案:.
解析:在方向上的投影為.
6.(20xx天津文)若等邊的邊長為,平面內(nèi)一點M滿足,則= .
考查目的:考查平面向量的加、減法運算和平面向量的數(shù)量積運算.
答案:-2.
解析:∵,∴,,∴.
三、解答題
7.已知,若,試求實數(shù)的值.
考查目的:考查平面向量的數(shù)量積運算和平面向量垂直的性質(zhì)等.
答案:.
解析:∵,∴,即,得.
8.已知向量,,.
、徘蟮淖钚≈导跋鄳(yīng)的值;
、迫襞c共線,求實數(shù).
考查目的:考查平面向量的坐標運算與求函數(shù)最值等的綜合運算.
解析:⑴∵,∴,∴,當(dāng)且僅當(dāng)時取等號;⑵∵,與共線,∴,∴.
《平面向量的數(shù)量積》8
1.平面向量的數(shù)量積
平面向量數(shù)量積的定義
已知兩個非零向量a和b,它們的夾角為,把數(shù)量|a||b|cos 叫做a和b的數(shù)量積(或內(nèi)積),記作ab.即ab=|a||b|cos ,規(guī)定0a=0.
2.向量數(shù)量積的運算律
(1)ab=ba
(2)(a)b=(ab)=a(b)
(3)(a+b)c=ac+bc
[探究] 根據(jù)數(shù)量積的.運算律,判斷下列結(jié)論是否成立.
(1)ab=ac,則b=c嗎?
(2)(ab)c=a(bc)嗎?
提示:(1)不一定,a=0時不成立,
另外a0時,ab=ac.由數(shù)量積概念可知b與c不能確定;
(2)(ab)c=a(bc)不一定相等.
(ab)c是c方向上的向量,而a(bc)是a方向上的向量,當(dāng)a與c不共線時它們必不相等.
《平面向量的數(shù)量積》9
教學(xué)準備
教學(xué)目標
1.掌握平面向量的數(shù)量積及其幾何意義;
2.掌握平面向量數(shù)量積的重要性質(zhì)及運算律;
3.了解用平面向量的數(shù)量積可以處理垂直的問題;
4.掌握向量垂直的條件.
教學(xué)重難點
教學(xué)重點:平面向量的數(shù)量積定義
教學(xué)難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應(yīng)用
教學(xué)過程
1.平面向量數(shù)量積(內(nèi)積)的定義:已知兩個非零向量a與b,它們的夾角是θ,
則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作ab,即有ab=|a||b|cosq,(0≤θ≤π).
并規(guī)定0向量與任何向量的數(shù)量積為0.
探究:
1、向量數(shù)量積是一個向量還是一個數(shù)量?它的符號什么時候為正?什么時候為負?
2、兩個向量的`數(shù)量積與實數(shù)乘向量的積有什么區(qū)別?
(1)兩個向量的數(shù)量積是一個實數(shù),不是向量,符號由cosq的符號所決定.
(2)兩個向量的數(shù)量積稱為內(nèi)積,寫成ab;今后要學(xué)到兩個向量的外積ab,而ab是兩個向量的數(shù)量的積,書寫時要嚴格區(qū)分.符號“·”在向量運算中不是乘號,既不能省略,也不能用“”代替.
(3)在實數(shù)中,若a?0,且ab=0,則b=0;但是在數(shù)量積中,若a?0,且ab=0,不能推出b=0.因為其中cosq有可能為0.
【《平面向量的數(shù)量積》】相關(guān)文章:
《平面向量的數(shù)量積》9篇[熱]04-01
厚積厚發(fā)作文07-27
厚積而薄發(fā)作文09-24
厚積方能薄發(fā)作文10-03
厚積才能薄發(fā)作文09-01
積跬步至千里作文09-23
唯積跬步至千里作文04-29