對數(shù)的運(yùn)算性質(zhì)
當(dāng)a>0且a≠1時,M>0,N>0,那么:
。1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
。3)log(a)(M^n)=nlog(a)(M) (n∈R)
。6)換底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
設(shè)a=n^x則a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
log(a)a^b=b 證明:設(shè)a^log(a)N=X,log(a)N=log(a)X,N=X