毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

歡迎來(lái)到瑞文網(wǎng)!

高中數(shù)學(xué)開(kāi)學(xué)第一課教案

高中數(shù)學(xué)開(kāi)學(xué)第一課教案

  作為一名教師,總不可避免地需要編寫教案,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。教案應(yīng)該怎么寫呢?以下是小編幫大家整理的高中數(shù)學(xué)開(kāi)學(xué)第一課教案(精選12篇),歡迎大家分享。

  高中數(shù)學(xué)開(kāi)學(xué)第一課教案1

  教學(xué)目標(biāo):

 。1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問(wèn)題。

 。2)進(jìn)一步理解曲線的方程和方程的曲線。

 。3)初步掌握求曲線方程的方法。

 。4)通過(guò)本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題和轉(zhuǎn)化的能力。

  教學(xué)重點(diǎn)、難點(diǎn):

  求曲線的方程。

  教學(xué)用具:

  計(jì)算機(jī)。

  教學(xué)方法:

  啟發(fā)引導(dǎo)法,討論法。

  教學(xué)過(guò)程:

  【引入】

  1、提問(wèn):什么是曲線的方程和方程的曲線。

  學(xué)生思考并回答。教師強(qiáng)調(diào)。

  2、坐標(biāo)法和解析幾何的意義、基本問(wèn)題。

  對(duì)于一個(gè)幾何問(wèn)題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過(guò)研究方程的性質(zhì)間接地來(lái)研究曲線的性質(zhì),這一研究幾何問(wèn)題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何。解析幾何的兩大基本問(wèn)題就是:

  (1)根據(jù)已知條件,求出表示平面曲線的方程。

  (2)通過(guò)方程,研究平面曲線的性質(zhì)。

  事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問(wèn)題。而且要先研究如何求出曲線方程,再研究如何用方程研究曲線。本節(jié)課就初步研究曲線方程的求法。

  【問(wèn)題】

  如何根據(jù)已知條件,求出曲線的方程。

  【實(shí)例分析】

  例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程。

  首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決。

  解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),

  由斜率關(guān)系可求得l的斜率為

  于是有

  即l的方程為

 、

  分析、引導(dǎo):上述問(wèn)題是我們?cè)缇蛯W(xué)過(guò)的,用點(diǎn)斜式就可解決。可是,你們是否想過(guò)①恰好就是所求的嗎?或者說(shuō)①就是直線的方程?根據(jù)是什么,有證明嗎?

 。ㄍㄟ^(guò)教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒(méi)有解決的問(wèn)題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條)。

  證明:

  (1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解。

  設(shè)是線段的垂直平分線上任意一點(diǎn),則

  即

  將上式兩邊平方,整理得

  這說(shuō)明點(diǎn)的坐標(biāo)是方程的解。

 。2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。

  設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則

  到、的距離分別為

  所以,即點(diǎn)在直線上。

  綜合(1)、(2),①是所求直線的方程。

  至此,證明完畢;仡櫳鲜鰞(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見(jiàn),這個(gè)證明過(guò)程就表明一種求解過(guò)程,下面試試看:

  解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合

  由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為

  將上式兩邊平方,整理得

  果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足。顯然,求解過(guò)程就說(shuō)明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證。

  這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想。因此是個(gè)好方法。

  讓我們用這個(gè)方法試解如下問(wèn)題:

  例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程。

  分析:這是一個(gè)純粹的幾何問(wèn)題,連坐標(biāo)系都沒(méi)有。所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系。然后仿照例1中的解法進(jìn)行求解。

  求解過(guò)程略。

  【概括總結(jié)】通過(guò)學(xué)生討論,師生共同總結(jié):

  分析上面兩個(gè)例題的求解過(guò)程,我們總結(jié)一下求解曲線方程的大體步驟:

  首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正。說(shuō)得更準(zhǔn)確一點(diǎn)就是:

 。1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);

 。2)寫出適合條件的點(diǎn)的集合;

  (3)用坐標(biāo)表示條件,列出方程;

 。4)化方程為最簡(jiǎn)形式;

 。5)證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。

  一般情況下,求解過(guò)程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過(guò)程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說(shuō)明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。所以,通常情況下證明可省略,不過(guò)特殊情況要說(shuō)明。

  上述五個(gè)步驟可簡(jiǎn)記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡(jiǎn);修正。

  下面再看一個(gè)問(wèn)題:

  例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程。

  【動(dòng)畫演示】用幾何畫板演示曲線生成的過(guò)程和形狀,在運(yùn)動(dòng)變化的過(guò)程中尋找關(guān)系。

  解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合

  由距離公式,點(diǎn)適合的條件可表示為①

  將①式移項(xiàng)后再兩邊平方,得

  化簡(jiǎn)得

  由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示。

  【練習(xí)鞏固】

  題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為 ,且有,求點(diǎn)軌跡方程。

  分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡(jiǎn)單,如圖3所示。設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為。

  根據(jù)條件,代入坐標(biāo)可得

  化簡(jiǎn)得

  由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為

  【小結(jié)】師生共同總結(jié):

  (1)解析幾何研究研究問(wèn)題的方法是什么?

  (2)如何求曲線的方程?

  (3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià)。各步驟的作用,哪步重要,哪步應(yīng)注意什么?

  【作業(yè)】課本第72頁(yè)練習(xí)1,2,3;

  高中數(shù)學(xué)開(kāi)學(xué)第一課教案2

  教學(xué)目標(biāo):

  1、使學(xué)生了解角的形成,理解角的概念掌握角的各種表示法;

  2、通過(guò)觀察、操作培養(yǎng)學(xué)生的觀察能力和動(dòng)手操作能力。

  3、使學(xué)生掌握度、分、秒的進(jìn)位制,會(huì)作度、分、秒間的單位互化

  4、采用自學(xué)與小組合作學(xué)習(xí)相結(jié)合的方法,培養(yǎng)學(xué)生主動(dòng)參與、勇于探究的精神。

  教學(xué)重點(diǎn):

  理解角的概念,掌握角的三種表示方法

  教學(xué)難點(diǎn):

  掌握度、分、秒的進(jìn)位制, ,會(huì)作度、分、秒間的單位互化

  教學(xué)手段:

  教具:電腦課件、實(shí)物投影、量角器

  學(xué)具:量角器需測(cè)量的角

  教學(xué)過(guò)程:

  一、建立角的概念

 。ㄒ唬┮虢牵ɡ谜n件演示)

  1、從生活中引入

  提問(wèn):

  A、以前我們?cè)?jīng)認(rèn)識(shí)過(guò)角,那你們能從這兩個(gè)圖形中指出哪些地方是角嗎?

  B、在我們的生活當(dāng)中存在著許許多多的角。一起看一看。誰(shuí)能從這些常用的物品中找出角?

  2、從射線引入

  提問(wèn):

  A、昨天我們認(rèn)識(shí)了射線,想從一點(diǎn)可以引出多少條射線?

  B、如果從一點(diǎn)出發(fā)任意取兩條射線,那出現(xiàn)的是什么圖形?

  C、哪兩條射線可以組成一個(gè)角?誰(shuí)來(lái)指一指。

 。ǘ┱J(rèn)識(shí)角,總結(jié)角的定義

  3、 過(guò)渡:角是怎么形成的呢?一起看

  (1)、演示:老師在這畫上一個(gè)點(diǎn),現(xiàn)在從這點(diǎn)出發(fā)引出一條射線,再?gòu)倪@點(diǎn)出發(fā)引出第二條射線。

  提問(wèn):觀察從這點(diǎn)引出了幾條射線?此時(shí)所組成的圖形是什么圖形?

  (2)、判斷下列哪些圖形是角。

 。ā蹋 (×) (√) (×) (√)

  為何第二幅和第四幅圖形不是角?(學(xué)生回答)

  誰(shuí)能用自己的話來(lái)概括一下怎樣組成的圖形叫做角?

  總結(jié):有公共端點(diǎn)的兩條射線所組成的圖形叫做角(angle)

  角的第二定義:角也可以看做由一條射線繞端點(diǎn)旋轉(zhuǎn)所形成的圖形.如下圖中的角,可以看做射線OA繞端點(diǎn)0按逆時(shí)針?lè)较蛐D(zhuǎn)到OB所形成的我們把OA叫做角的始邊,OB叫做角的終邊。

  B

  0 A

  4、認(rèn)識(shí)角的各部分名稱,明確頂點(diǎn)、邊的作用

 。1)觀看角的圖形提問(wèn):這個(gè)點(diǎn)叫什么?這兩條射線叫什么?(學(xué)生邊說(shuō)師邊標(biāo)名稱)

 。2)角可以畫在本上、黑板上,那角的位置是由誰(shuí)決定的?

  (3)頂點(diǎn)可以確定角的位置,從頂點(diǎn)引出的兩條邊可以組成一個(gè)角。

  5、學(xué)會(huì)用符號(hào)表示角

  提問(wèn):那么,角的符號(hào)是什么?該怎么寫,怎么讀的呢?(電腦顯示)

 。1)可以標(biāo)上三個(gè)大寫字母,寫作:∠ABC或∠CBA,讀作:角ABC或角CBA.

 。2)觀察這兩種方法,有什么特點(diǎn)?(字母B都在中間)

 。3)所以,在只有一個(gè)角的時(shí)候,我們還可以寫作: ∠B,讀作:角B

 。4)為了方便,有時(shí)我們還可以標(biāo)上數(shù)字,寫作∠1,讀作:角1

 。5)注:區(qū)別 “∠”和“<”的不同。請(qǐng)同學(xué)們指著用學(xué)具折出的一個(gè)角,訓(xùn)練一下這三種讀法。

  6、強(qiáng)調(diào)角的大小與兩邊張開(kāi)的程度有關(guān),與兩條邊的長(zhǎng)短無(wú)關(guān)。

  二、 角的度量

  1、學(xué)習(xí)角的度量

 。1)教學(xué)生認(rèn)識(shí)量角器

  (2) 認(rèn)識(shí)了量角器,那怎樣使用它去測(cè)量角的度數(shù)呢?這部分知識(shí)請(qǐng)同學(xué)們合作學(xué)習(xí)。

  提出要求:小組合作邊學(xué)習(xí)測(cè)量方法邊嘗試測(cè)量

  第一個(gè)角,想想有幾種方法?

  1、要求合作學(xué)習(xí)探究、測(cè)量。

  2、反饋匯報(bào):學(xué)生邊演示邊復(fù)述過(guò)程

  3、教師利用課件演示正確的操作過(guò)程,糾正學(xué)生中存在的問(wèn)題。

  4、歸納概括測(cè)量方法(兩重合一對(duì))

 。1)用量角器的中心點(diǎn)與角的頂點(diǎn)重合

  (2)零刻度線與角的一邊重合(可與內(nèi)零度刻度線重合;也可與外零度刻度線重合)

 。3)另一條邊所對(duì)的角的度數(shù),就是這個(gè)角的度數(shù)。

  5、小結(jié):同一個(gè)角無(wú)論是用內(nèi)刻度量角,還是用外刻度量角,結(jié)果都一樣。

  6、獨(dú)立練習(xí)測(cè)量角的度數(shù)(書做一做中第一題1,3與第二題)

 。1) 獨(dú)立測(cè)量,師注意查看學(xué)生中存在的問(wèn)題。

  (2) 課件演示糾正問(wèn)題

  三、度、分、秒的進(jìn)位制及這些單位間的互化

  為了更精細(xì)地度量角,我們引入更小的角度單位:分、秒.把1°的角等分成60份,每份叫做1分記作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒記作1″.

  1°=60′,1′=60″;

  1′=( )°,1″=( )′.

  例1 將57.32°用度、分、秒表示.

  解:先把0.32°化為分,

  0.32°=60′×0.32=19.2′.

  再把0.2′化為秒,

  0.2′=60″×0.2=12″.

  所以 57.32″=57°19′12″.

  例2 把10°6′36″用度表示.

  解:先把36″化為分,

  36″=( )′×36=0.6′

  6′+0.6′=6.6′.

  再把6.6′化為度,

  6.6′=( )°×6.6=0.11°.

  所以 10°6′36″=10.11°.

  四、鞏固練習(xí)

  課本P122練習(xí)

  五、總結(jié):請(qǐng)大家回憶一下,今天都學(xué)了那些知識(shí),通過(guò)學(xué)習(xí)你想說(shuō)些什么?

  六、作業(yè):課本P123 3、4.(1)(3)、5.(2)(4)

  高中數(shù)學(xué)開(kāi)學(xué)第一課教案3

  一、教學(xué)內(nèi)容分析

  圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象,恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡(jiǎn)馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。

  二、學(xué)生學(xué)習(xí)情況分析

  我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。

  三、設(shè)計(jì)思想

  由于這部分知識(shí)較為抽象,如果離開(kāi)感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情。在教學(xué)時(shí),借助多媒體動(dòng)畫,引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率。

  四、教學(xué)目標(biāo)

  1、深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

  2、通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

  3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

  五、教學(xué)重點(diǎn)與難點(diǎn):

  教學(xué)重點(diǎn)

  1、對(duì)圓錐曲線定義的理解

  2、利用圓錐曲線的定義求“最值”

  3、“定義法”求軌跡方程

  教學(xué)難點(diǎn):

  巧用圓錐曲線定義解題

  六、教學(xué)過(guò)程設(shè)計(jì)

  【設(shè)計(jì)思路】

  (一)開(kāi)門見(jiàn)山,提出問(wèn)題

  一上課,我就直截了當(dāng)?shù)亟o出例題1:

  (1)已知A(-2,0),B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是()。

  (A)橢圓(B)雙曲線(C)線段(D)不存在

  (2)已知?jiǎng)狱c(diǎn)M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是()。

  (A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

  【設(shè)計(jì)意圖】

  定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問(wèn)題。

  為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。

  【學(xué)情預(yù)設(shè)】

  估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說(shuō)出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)25

  這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過(guò)適當(dāng)?shù)淖冃,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。

  在對(duì)學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長(zhǎng)為,焦距為。以深化對(duì)概念的理解。

  (二)理解定義、解決問(wèn)題

  例2:

  (1)已知?jiǎng)訄AA過(guò)定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。

  (2)在(1)的條件下,給定點(diǎn)P(-2,2),求|PA|

  【設(shè)計(jì)意圖】

  運(yùn)用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問(wèn)題化歸為幾何中求最大(小)值的模式,是解析幾何問(wèn)題中的一種常見(jiàn)題型,也是學(xué)生們比較容易混淆的一類問(wèn)題。例2的設(shè)置就是為了方便學(xué)生的辨析。

  【學(xué)情預(yù)設(shè)】

  根據(jù)以往的經(jīng)驗(yàn),多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準(zhǔn)確寫出點(diǎn)A的軌跡,有了練習(xí)題1的鋪墊,這個(gè)問(wèn)題對(duì)學(xué)生們來(lái)講就顯得頗為簡(jiǎn)單,因此面對(duì)例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對(duì)于例2(2)這樣相對(duì)比較陌生的問(wèn)題,學(xué)生就無(wú)從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來(lái),這樣就容易和第二定義聯(lián)系起來(lái),從而找到解決本題的突破口。

  (三)自主探究、深化認(rèn)識(shí)

  如果時(shí)間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會(huì)。

  練習(xí):

  設(shè)點(diǎn)Q是圓C:(x1)2225|AB|的最小值。3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內(nèi)一點(diǎn),AQ的垂直平分線與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。

  引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì)是什么?

  【設(shè)計(jì)意圖】練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺(tái),當(dāng)然,如果課堂上時(shí)間允許的話,

  可借助“多媒體課件”,引導(dǎo)學(xué)生對(duì)自己的結(jié)論進(jìn)行驗(yàn)證。

  【知識(shí)鏈接】

  (一)圓錐曲線的定義

  1、圓錐曲線的第一定義

  2、圓錐曲線的統(tǒng)一定義

  (二)圓錐曲線定義的應(yīng)用舉例

  1、雙曲線1的兩焦點(diǎn)為F1、F2,P為曲線上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P到右準(zhǔn)線的距離。

  2、|PF1||PF2|2P為等軸雙曲線x2y2a2上一點(diǎn),F(xiàn)1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|取值范圍。

  3、在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的方程和點(diǎn)A的坐標(biāo)。

  4、例題:

  (1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。

  (2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右支上移動(dòng),當(dāng)|AM||MF|最小時(shí),求M點(diǎn)的坐標(biāo)。

  (3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線y,在拋物線上求一點(diǎn)M,使|PM|+|FM|最小。

  5、已知A(4,0),B(2,2)是橢圓1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最小值與最大值。

  七、教學(xué)反思

  1、本課將借助于,將使全體學(xué)生參與活動(dòng)成為可能,使原來(lái)令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢(shì)。

  2、利用兩個(gè)例題及其引申,通過(guò)一題多變,層層深入的探索,以及對(duì)猜測(cè)結(jié)果的檢測(cè)研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會(huì)一個(gè)問(wèn)題的求解到掌握一類問(wèn)題的解決方法,循序漸進(jìn)的讓學(xué)生把握這類問(wèn)題的解法;將學(xué)生容易混淆的兩類求“最值問(wèn)題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動(dòng)量并不會(huì)小。

  總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題,而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會(huì),能夠使學(xué)生在學(xué)習(xí)新知識(shí)的同時(shí),激發(fā)起求知的欲望,在尋求解決問(wèn)題的辦法的過(guò)程中獲得自信和成功的體驗(yàn),于不知不覺(jué)中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。

  高中數(shù)學(xué)開(kāi)學(xué)第一課教案4

  一、單元教學(xué)內(nèi)容

  (1)算法的基本概念

  (2)算法的基本結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)

  (3)算法的基本語(yǔ)句:輸入、輸出、賦值、條件、循環(huán)語(yǔ)句

  二、單元教學(xué)內(nèi)容分析

  算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計(jì)算科學(xué)的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì)發(fā)展中發(fā)揮著越來(lái)越大的作用,并日益融入社會(huì)生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。需要特別指出的是,中國(guó)古代數(shù)學(xué)中蘊(yùn)涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對(duì)具體數(shù)學(xué)實(shí)例的分析,體驗(yàn)程序框圖在解決問(wèn)題中的作用;通過(guò)模仿、操作、探索,學(xué)習(xí)設(shè)計(jì)程序框圖表達(dá)解決問(wèn)題的過(guò)程;體會(huì)算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力

  三、單元教學(xué)課時(shí)安排:

  1、算法的基本概念3課時(shí)

  2、程序框圖與算法的基本結(jié)構(gòu)5課時(shí)

  3、算法的基本語(yǔ)句2課時(shí)

  四、單元教學(xué)目標(biāo)分析

  1、通過(guò)對(duì)解決具體問(wèn)題過(guò)程與步驟的分析體會(huì)算法的思想,了解算法的含義

  2、通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設(shè)計(jì)程序框圖表達(dá)解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。

  3、經(jīng)歷將具體問(wèn)題的程序框圖轉(zhuǎn)化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句:輸入、輸出、斌值、條件、循環(huán)語(yǔ)句,進(jìn)一步體會(huì)算法的基本思想。

  4、通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

  五、單元教學(xué)重點(diǎn)與難點(diǎn)分析

  1、重點(diǎn)

  (1)理解算法的含義(2)掌握算法的基本結(jié)構(gòu)(3)會(huì)用算法語(yǔ)句解決簡(jiǎn)單的實(shí)際問(wèn)題

  2、難點(diǎn)

  (1)程序框圖(2)變量與賦值(3)循環(huán)結(jié)構(gòu)(4)算法設(shè)計(jì)

  六、單元總體教學(xué)方法

  本章教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強(qiáng),只能通過(guò)對(duì)實(shí)例的認(rèn)真領(lǐng)會(huì)及一定的練習(xí)才能掌握本節(jié)知識(shí)。

  七、單元展開(kāi)方式與特點(diǎn)

  1、展開(kāi)方式

  自然語(yǔ)言→程序框圖→算法語(yǔ)句

  2、特點(diǎn)

  (1)螺旋上升分層遞進(jìn)(2)整合滲透前呼后應(yīng)(3)三線合一橫向貫通(4)彈性處理多樣選擇

  八、單元教學(xué)過(guò)程分析

  1.算法基本概念教學(xué)過(guò)程分析

  對(duì)生活中的實(shí)際問(wèn)題通過(guò)對(duì)解決具體問(wèn)題過(guò)程與步驟的分析(喝茶,如二元一次方程組求解問(wèn)題),體會(huì)算法的思想,了解算法的含義,能用自然語(yǔ)言描述算法。

  2.算法的流程圖教學(xué)過(guò)程分析

  對(duì)生活中的實(shí)際問(wèn)題通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設(shè)計(jì)流程圖表達(dá)解決問(wèn)題的過(guò)程,了解算法和程序語(yǔ)言的區(qū)別;在具體問(wèn)題的解決過(guò)程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會(huì)用流程圖表示算法。

  3.基本算法語(yǔ)句教學(xué)過(guò)程分析

  經(jīng)歷將具體生活中問(wèn)題的流程圖轉(zhuǎn)化為程序語(yǔ)言的過(guò)程,理解表示的幾種基本算法語(yǔ)句:賦值語(yǔ)句、輸入語(yǔ)句、輸出語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì)算法的基本思想。能用自然語(yǔ)言、流程圖和基本算法語(yǔ)句表達(dá)算法,

  4.通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

  九、單元評(píng)價(jià)設(shè)想

  1.重視對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)過(guò)程的評(píng)價(jià)

  關(guān)注學(xué)生在數(shù)學(xué)語(yǔ)言的學(xué)習(xí)過(guò)程中,是否對(duì)用集合語(yǔ)言描述數(shù)學(xué)和現(xiàn)實(shí)生活中的問(wèn)題充滿興趣;在學(xué)習(xí)過(guò)程中,能否體會(huì)集合語(yǔ)言準(zhǔn)確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行交流的能力。

  2.正確評(píng)價(jià)學(xué)生的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能

  關(guān)注學(xué)生在本章(節(jié))及今后學(xué)習(xí)中,讓學(xué)生集中學(xué)習(xí)算法的初步知識(shí),主要包括算法的基本結(jié)構(gòu)、基本語(yǔ)句、基本思想等。算法思想將貫穿高中數(shù)學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習(xí)算法

  高中數(shù)學(xué)開(kāi)學(xué)第一課教案5

  教學(xué)目的

  掌握?qǐng)A的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問(wèn)題

  教學(xué)重點(diǎn)

  圓的標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用

  教學(xué)難點(diǎn)

  標(biāo)準(zhǔn)方程的靈活運(yùn)用

  教學(xué)過(guò)程:

  一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

  二、掌握知識(shí),鞏固練習(xí)

  練習(xí):⒈說(shuō)出下列圓的方程

 、艌A心(3,-2)半徑為5⑵圓心(0,3)半徑為3

  ⒉指出下列圓的圓心和半徑

 、牛▁-2)2+(y+3)2=3

 、苮2+y2=2

  ⑶x2+y2-6x+4y+12=0

 、撑袛3x-4y-10=0和x2+y2=4的位置關(guān)系

 、磮A心為(1,3),并與3x-4y-7=0相切,求這個(gè)圓的方程

  三、引伸提高,講解例題

  例1、圓心在y=-2x上,過(guò)p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

  練習(xí):1、某圓過(guò)(-2,1)、(2,3),圓心在x軸上,求其方程。

  2、某圓過(guò)A(-10,0)、B(10,0)、C(0,4),求圓的方程。

  例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長(zhǎng)度。

  例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過(guò)M的圓的切線方程(一題多解,訓(xùn)練思維)

  四、小結(jié)練習(xí)P771,2,3,4

  五、作業(yè)P811,2,3,4

  高中數(shù)學(xué)開(kāi)學(xué)第一課教案6

  教學(xué)目標(biāo)

 。1)正確理解排列的意義。能利用樹(shù)形圖寫出簡(jiǎn)單問(wèn)題的所有排列;

 。2)了解排列和排列數(shù)的意義,能根據(jù)具體的問(wèn)題,寫出符合要求的排列;

 。3)掌握排列數(shù)公式,并能根據(jù)具體的問(wèn)題,寫出符合要求的排列數(shù);

 。4)會(huì)分析與數(shù)字有關(guān)的排列問(wèn)題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;

 。5)通過(guò)對(duì)排列應(yīng)用問(wèn)題的學(xué)習(xí),讓學(xué)生通過(guò)對(duì)具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

  教學(xué)建議

  一、知識(shí)結(jié)構(gòu)

  二、重點(diǎn)難點(diǎn)分析

  本小節(jié)的重點(diǎn)是排列的定義、排列數(shù)及排列數(shù)的公式,并運(yùn)用這個(gè)公式去解決有關(guān)排列數(shù)的應(yīng)用問(wèn)題。難點(diǎn)是導(dǎo)出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題。突破重點(diǎn)、難點(diǎn)的關(guān)鍵是對(duì)加法原理和乘法原理的掌握和運(yùn)用,并將這兩個(gè)原理的基本思想方法貫穿在解決排列應(yīng)用問(wèn)題當(dāng)中。

  從n個(gè)不同元素中任取m(m≤n)個(gè)元素,按照一定的順序排成一列,稱為從n個(gè)不同元素中任取m個(gè)元素的一個(gè)排列。因此,兩個(gè)相同排列,當(dāng)且僅當(dāng)他們的元素完全相同,并且元素的排列順序也完全相同。排列數(shù)是指從n個(gè)不同元素中任取m(m≤n)個(gè)元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計(jì)算相應(yīng)的排列數(shù)。排列與排列數(shù)是兩個(gè)概念,前者是具有m個(gè)元素的排列,后者是這種排列的不同種數(shù)。從集合的角度看,從n個(gè)元素的有限集中取出m個(gè)組成的有序集,相當(dāng)于一個(gè)排列,而這種有序集的個(gè)數(shù),就是相應(yīng)的排列數(shù)。

  公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來(lái)講解。要重點(diǎn)分析好的推導(dǎo)。

  排列的應(yīng)用題是本節(jié)教材的難點(diǎn),通過(guò)本節(jié)例題的分析,應(yīng)注意培養(yǎng)學(xué)生解決應(yīng)用問(wèn)題的能力。

  在分析應(yīng)用題的解法時(shí),教材上先畫出框圖,然后分析逐次填入時(shí)的種數(shù),這樣解釋比較直觀,教學(xué)上要充分利用,要求學(xué)生作題時(shí)也應(yīng)盡量采用。

  在教學(xué)排列應(yīng)用題時(shí),開(kāi)始應(yīng)要求學(xué)生寫解法要有簡(jiǎn)要的文字說(shuō)明,防止單純的只寫一個(gè)排列數(shù),這樣可以培養(yǎng)學(xué)生的分析問(wèn)題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。

  三、教法建議

 、僭谥v解排列數(shù)的概念時(shí),要注意區(qū)分“排列數(shù)”與“一個(gè)排列”這兩個(gè)概念。一個(gè)排列是指“從n個(gè)不同元素中,任取出m個(gè)元素,按照一定的順序擺成一排”,它不是一個(gè)數(shù),而是具體的一件事;排列數(shù)是指“從n個(gè)不同元素中取出m個(gè)元素的所有排列的個(gè)數(shù)”,它是一個(gè)數(shù)。例如,從3個(gè)元素a,b,c中每次取出2個(gè)元素,按照一定的順序排成一排,有如下幾種:

  ab,ac,ba,bc,ca,cb,

  其中每一種都叫一個(gè)排列,共有6種,而數(shù)字6就是排列數(shù),符號(hào)表示排列數(shù)。

 、谂帕械'定義中包含兩個(gè)基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”。

  從定義知,只有當(dāng)元素完全相同,并且元素排列的順序也完全相同時(shí),才是同一個(gè)排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。

  在定義中“一定順序”就是說(shuō)與位置有關(guān),在實(shí)際問(wèn)題中,要由具體問(wèn)題的性質(zhì)和條件來(lái)決定,這一點(diǎn)要特別注意,這也是與后面學(xué)習(xí)的組合的根本區(qū)別。

  在排列的定義中,如果有的書上叫選排列,如果,此時(shí)叫全排列。

  要特別注意,不加特殊說(shuō)明,本章不研究重復(fù)排列問(wèn)題。

 、坳P(guān)于排列數(shù)公式的推導(dǎo)的教學(xué)。公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來(lái)講解。課本上用的是不完全歸納法,先推導(dǎo),再推廣到,這樣由特殊到一般,由具體到抽象的講法,學(xué)生是不難理解的。

  導(dǎo)出公式后要分析這個(gè)公式的構(gòu)成特點(diǎn),以便幫助學(xué)生正確地記憶公式,防止學(xué)生在“n”、“m”比較復(fù)雜的時(shí)候把公式寫錯(cuò)。這個(gè)公式的特點(diǎn)可見(jiàn)課本第229頁(yè)的一段話:“其中,公式右邊第一個(gè)因數(shù)是n,后面每個(gè)因數(shù)都比它前面一個(gè)因數(shù)少1,最后一個(gè)因數(shù)是,共m個(gè)因數(shù)相乘!边@實(shí)際是講三個(gè)特點(diǎn):第一個(gè)因數(shù)是什么?最后一個(gè)因數(shù)是什么?一共有多少個(gè)連續(xù)的自然數(shù)相乘。

  公式是在引出全排列數(shù)公式后,將排列數(shù)公式變形后得到的公式。對(duì)這個(gè)公式指出兩點(diǎn):

  (1)在一般情況下,要計(jì)算具體的排列數(shù)的值,常用前一個(gè)公式,而要對(duì)含有字母的排列數(shù)的式子進(jìn)行變形或作有關(guān)的論證,要用到這個(gè)公式,教材中第230頁(yè)例2就是用這個(gè)公式證明的問(wèn)題;

  (2)為使這個(gè)公式在時(shí)也能成立,規(guī)定,如同時(shí)一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋。

 、芙ㄗh應(yīng)充分利用樹(shù)形圖對(duì)問(wèn)題進(jìn)行分析,這樣比較直觀,便于理解。

 、輰W(xué)生在開(kāi)始做排列應(yīng)用題的作業(yè)時(shí),應(yīng)要求他們寫出解法的簡(jiǎn)要說(shuō)明,而不能只列出算式、得出答數(shù),這樣有利于學(xué)生得更加扎實(shí)。隨著學(xué)生解題熟練程度的提高,可以逐步降低這種要求。

  高中數(shù)學(xué)開(kāi)學(xué)第一課教案7

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能

  (1)掌握斜二測(cè)畫法畫水平設(shè)置的平面圖形的直觀圖。

  (2)采用對(duì)比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點(diǎn)。

  2.過(guò)程與方法

  學(xué)生通過(guò)觀察和類比,利用斜二測(cè)畫法畫出空間幾何體的直觀圖。

  3.情感態(tài)度與價(jià)值觀

  (1)提高空間想象力與直觀感受。

  (2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。

  (3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn)、難點(diǎn):用斜二測(cè)畫法畫空間幾何值的直觀圖。

  三、學(xué)法與教學(xué)用具

  1.學(xué)法:學(xué)生通過(guò)作圖感受圖形直觀感,并自然采用斜二測(cè)畫法畫空間幾何體的過(guò)程。

  2.教學(xué)用具:三角板、圓規(guī)

  四、教學(xué)思路

  (一)創(chuàng)設(shè)情景,揭示課題

  1.我們都學(xué)過(guò)畫畫,這節(jié)課我們畫一物體:圓柱

  把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫。

  2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰(shuí)畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。

  (二)研探新知

  1.例1,用斜二測(cè)畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見(jiàn)解,教師及時(shí)給予點(diǎn)評(píng)。

  畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來(lái),因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測(cè)畫法的步驟。

  練習(xí)反饋

  根據(jù)斜二測(cè)畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。

  2.例2,用斜二測(cè)畫法畫水平放置的圓的直觀圖

  教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。

  教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。

  3.探求空間幾何體的直觀圖的畫法

  (1)例3,用斜二測(cè)畫法畫長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體ABCD-A’B’C’D’的直觀圖。

  教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。

  (2)投影出示幾何體的三視圖、課本P15圖1.2-9,請(qǐng)說(shuō)出三視圖表示的幾何體?并用斜二測(cè)畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。

  4.平行投影與中心投影

  投影出示課本P17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。

  5.鞏固練習(xí),課本P16練習(xí)1(1),2,3,4

  三、歸納整理

  學(xué)生回顧斜二測(cè)畫法的關(guān)鍵與步驟

  四、作業(yè)

  1.書畫作業(yè),課本P17練習(xí)第5題

  2.課外思考課本P16,探究(1)(2)

  高中數(shù)學(xué)開(kāi)學(xué)第一課教案8

  教學(xué)目標(biāo)

  (1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問(wèn)題;

  (2)使學(xué)生掌握組合數(shù)的計(jì)算公式;

  (3)通過(guò)學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力;

  教學(xué)重點(diǎn)難點(diǎn)

  重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

  難點(diǎn)是解組合的應(yīng)用題.

  教學(xué)過(guò)程設(shè)計(jì)

  (一)導(dǎo)入新課

  (教師活動(dòng))提出下列思考問(wèn)題,打出字幕.

  [字幕]一條鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問(wèn)題中,哪一問(wèn)是排列問(wèn)題?哪一問(wèn)是組合問(wèn)題?

  (學(xué)生活動(dòng))討論并回答.

  答案提示:(1)排列;(2)組合.

  [評(píng)述]問(wèn)題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問(wèn)題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無(wú)順序關(guān)系,要求出不同的組數(shù),屬于組合問(wèn)題.這節(jié)課著重研究組合問(wèn)題.

  設(shè)計(jì)意圖:組合與排列所研究的問(wèn)題幾乎是平行的上面設(shè)計(jì)的問(wèn)題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問(wèn)題.

  (二)新課講授

  [提出問(wèn)題 創(chuàng)設(shè)情境]

  (教師活動(dòng))指導(dǎo)學(xué)生帶著問(wèn)題閱讀課文.

  [字幕]

  1.排列的定義是什么?

  2.舉例說(shuō)明一個(gè)組合是什么?

  3.一個(gè)組合與一個(gè)排列有何區(qū)別?

  (學(xué)生活動(dòng))閱讀回答.

  (教師活動(dòng))對(duì)照課文,逐一評(píng)析.

  設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過(guò)渡,并盡快適應(yīng)新的環(huán)境.

  【歸納概括 建立新知】

  (教師活動(dòng))承接上述問(wèn)題的回答,展示下面知識(shí).

  [字幕]模型:從 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合。如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合。

  組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 。

  [評(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問(wèn)題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問(wèn)題;若改變順序,仍得原來(lái)的取法,就是組合問(wèn)題。

  (學(xué)生活動(dòng))傾聽(tīng)、思索、記錄。

  (教師活動(dòng))提出思考問(wèn)題.

  [投影] 與 的關(guān)系如何?

  (師生活動(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:

  第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;

  第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .根據(jù)分步計(jì)數(shù)原理,得到

  [字幕]公式1:

  公式2:

  (學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.

  設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問(wèn)題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過(guò)程,使學(xué)生思維層層被激活、逐漸深入到問(wèn)題當(dāng)中去.

  【例題示范 探求方法】

  (教師活動(dòng))打出字幕,給出示范,指導(dǎo)訓(xùn)練.

  [字幕]例1 列舉從4個(gè)元素 中任取2個(gè)元素的所有組合.

  例2 計(jì)算:(1) ;(2) .

  (學(xué)生活動(dòng))板演、示范.

  (教師活動(dòng))講評(píng)并指出用兩種方法計(jì)算例2的第2小題.

  [字幕]例3 已知 ,求 的所有值.

  (學(xué)生活動(dòng))思考分析.

  解 首先,根據(jù)組合的定義,有

 、

  其次,由原不等式轉(zhuǎn)化為

  即

  解得 ②

  綜合①、②,得 ,即

  [點(diǎn)評(píng)]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.

  設(shè)計(jì)意圖:例題教學(xué)循序漸進(jìn),讓學(xué)生鞏固知識(shí),強(qiáng)化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.

  【反饋練習(xí) 學(xué)會(huì)應(yīng)用】

  (教師活動(dòng))給出練習(xí),學(xué)生解答,教師點(diǎn)評(píng).

  [課堂練習(xí)]課本P99練習(xí)第2,5,6題.

  [補(bǔ)充練習(xí)]

  [字幕]1.計(jì)算:

  2.已知 ,求 .

  (學(xué)生活動(dòng))板演、解答.

  設(shè)計(jì)意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.

  (三)小結(jié)

  (師生活動(dòng))共同小結(jié).

  本節(jié)主要內(nèi)容有

  1.組合概念.

  2.組合數(shù)計(jì)算的兩個(gè)公式.

  (四)布置作業(yè)

  1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

  2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競(jìng)賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

  3.研究性題:

  在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?

  (五)課后點(diǎn)評(píng)

  在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.

  高中數(shù)學(xué)開(kāi)學(xué)第一課教案9

  一、教材分析

  1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見(jiàn)到的、很普通的一個(gè)空間圖形!岸娼恰笔侨私贪妗稊(shù)學(xué)》第二冊(cè)(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過(guò)兩條異面直線所成的角、直線和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究?jī)蓚(gè)平面的垂直而提出的一個(gè)概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過(guò)本節(jié)課的學(xué)習(xí)還對(duì)學(xué)生系統(tǒng)地掌握直線和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

  2、教學(xué)目標(biāo):

  知識(shí)目標(biāo):

  (1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問(wèn)題。

  (2)進(jìn)一步培養(yǎng)學(xué)生把空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題的化歸思想。

  能力目標(biāo):

  (1)突出對(duì)類比、直覺(jué)、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。

 。2)通過(guò)對(duì)圖形的觀察、分析、比較和操作來(lái)強(qiáng)化學(xué)生的動(dòng)手操作能力。

  德育目標(biāo):

  (1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來(lái)自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)。

  (2)通過(guò)揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。

  情感目標(biāo):在平等的教學(xué)氛圍中,通過(guò)學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),拉近學(xué)生之間、師生之間的情感距離。

  3、重點(diǎn)、難點(diǎn):

  重點(diǎn):“二面角”和“二面角的平面角”的概念

  難點(diǎn):“二面角的平面角”概念的形成過(guò)程

  二、教法分析

  1、教學(xué)方法:在引入課題時(shí),我采用多媒體、實(shí)物演示法,在新課探究中采用問(wèn)題啟導(dǎo)、活動(dòng)探究和類比發(fā)現(xiàn)法,在形成技能時(shí)以訓(xùn)練法、探究研討法為主。

 。病⒔虒W(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計(jì)學(xué)生對(duì)二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計(jì)二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。

  3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來(lái)輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二面角的模型。

  三、學(xué)法指導(dǎo)

  1、樂(lè)學(xué):在整個(gè)學(xué)習(xí)過(guò)程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。

  2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。

  3、會(huì)學(xué):通過(guò)自己親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新,既能解決問(wèn)題,更能發(fā)現(xiàn)問(wèn)題。

  四、教學(xué)過(guò)程

  心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問(wèn)題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營(yíng)造了創(chuàng)新思維的氛圍。

 。ㄒ唬⒍娼

  1、揭示概念產(chǎn)生背景。

  問(wèn)題情境1、在平面幾何中“角”是怎樣定義的?

  問(wèn)題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?

  問(wèn)題情境3、運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書課題)。

  通過(guò)這三個(gè)問(wèn)題,打開(kāi)了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。

  2、展現(xiàn)概念形成過(guò)程。

  問(wèn)題情境4、那么,應(yīng)該如何定義二面角呢?

  創(chuàng)設(shè)這個(gè)問(wèn)題情境,為學(xué)生創(chuàng)新思維的展開(kāi)提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過(guò)程。教師應(yīng)注意多讓學(xué)生說(shuō),對(duì)于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果,教師要給與積極的評(píng)價(jià)。

  問(wèn)題情境5、同學(xué)們能舉出一些二面角的實(shí)例嗎?通過(guò)實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地理解概念。

 。ǘ⒍娼堑钠矫娼

  1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個(gè)旋轉(zhuǎn)量,同樣一個(gè)二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個(gè)旋轉(zhuǎn)量。說(shuō)明二面角不僅有大小,而且其大小是唯一確定的。平面與平面的位置關(guān)系,總的說(shuō)來(lái)只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,我們有必要來(lái)研究二面角的度量問(wèn)題。

  問(wèn)題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來(lái)處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。

  2、展現(xiàn)概念形成過(guò)程

 。1)、類比。教師啟發(fā),尋找類比聯(lián)想的對(duì)象。

  問(wèn)題情境7、我們以前碰到過(guò)類似的問(wèn)題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過(guò)的兩種空間角的定義,電腦演示以提高效率。

  問(wèn)題情境8、兩定義的共同點(diǎn)是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個(gè)角是唯一確定的。

  問(wèn)題情境9、這個(gè)平面的角的頂點(diǎn)及兩邊是如何確定的?

 。2)、提出猜想:二面角的大小也可通過(guò)平面的角來(lái)定義。對(duì)學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識(shí)和習(xí)慣,這對(duì)強(qiáng)化他們的創(chuàng)新意識(shí)大有幫助。

  問(wèn)題情境10、那么,這個(gè)角的頂點(diǎn)及兩邊應(yīng)如何確定呢?生:頂點(diǎn)放在棱上,兩邊分別放在兩個(gè)面內(nèi)。這也是學(xué)生直覺(jué)思維的結(jié)果。

 。3)、探索實(shí)驗(yàn)。通過(guò)實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動(dòng)手操作能力。

 。4)、繼續(xù)探索,得到定義。

  問(wèn)題情境11、那么,怎樣使這個(gè)角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點(diǎn)確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過(guò)直線上一點(diǎn)的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。

  (5)、自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說(shuō)明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。

  (三)、二面角及其平面角的畫法

  主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。

 。ㄋ模⒎独治

  為鞏固學(xué)生所學(xué)知識(shí),由于時(shí)間的關(guān)系設(shè)置了一道例題。來(lái)源于實(shí)際生活,不但培養(yǎng)了學(xué)生分析問(wèn)題和解決問(wèn)題的能力,也讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)概念來(lái)自生活實(shí)際,并服務(wù)于生活實(shí)際,從而增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識(shí)。

  例:一張邊長(zhǎng)為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個(gè)1200二面角,求此時(shí)B、c兩點(diǎn)間的距離。

  分析:涉及二面角的計(jì)算問(wèn)題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角?勺寣W(xué)生先做,為調(diào)動(dòng)學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會(huì)。教師講評(píng)時(shí)強(qiáng)調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。

  變式訓(xùn)練:圖中共有幾個(gè)二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本題的變式訓(xùn)練也可作為課后思考題。

  題后反思:(1)解題過(guò)程中必須證明∠BDc是二面角B—AD—c的平面角。

 。2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

 。ㄎ澹⒕毩(xí)、小結(jié)與作業(yè)

  練習(xí):習(xí)題9.7的第3題

  小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對(duì)空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時(shí)要求學(xué)生對(duì)本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法。

  作業(yè):習(xí)題9.7的第4題

  思考題:見(jiàn)例題

  五、板書設(shè)計(jì)(見(jiàn)課件)

  以上是我對(duì)《二面角》授課的初步設(shè)想,不足之處,懇請(qǐng)大家批評(píng)指正,謝謝!

  高中數(shù)學(xué)開(kāi)學(xué)第一課教案10

  教學(xué)目標(biāo):

  1、理解并掌握曲線在某一點(diǎn)處的切線的概念;

  2、理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;

  3、理解切線概念實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化問(wèn)題的能力及數(shù)形結(jié)合思想。

  教學(xué)重點(diǎn):

  理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法。

  教學(xué)難點(diǎn):

  用“無(wú)限逼近”、“局部以直代曲”的思想理解某一點(diǎn)處切線的斜率。

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  1、問(wèn)題情境。

  如何精確地刻畫曲線上某一點(diǎn)處的變化趨勢(shì)呢?

  如果將點(diǎn)P附近的曲線放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去有點(diǎn)像是直線。

  如果將點(diǎn)P附近的曲線再放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去幾乎成了直線。事實(shí)上,如果繼續(xù)放大,那么曲線在點(diǎn)P附近將逼近一條確定的直線,該直線是經(jīng)過(guò)點(diǎn)P的所有直線中最逼近曲線的一條直線。

  因此,在點(diǎn)P附近我們可以用這條直線來(lái)代替曲線,也就是說(shuō),點(diǎn)P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。

  2、探究活動(dòng)。

  如圖所示,直線l1,l2為經(jīng)過(guò)曲線上一點(diǎn)P的兩條直線,

 。1)試判斷哪一條直線在點(diǎn)P附近更加逼近曲線;

 。2)在點(diǎn)P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?

 。3)在點(diǎn)P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?

  二、建構(gòu)數(shù)學(xué)

  切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點(diǎn),直線PQ稱為曲線的割線。 隨著點(diǎn)Q沿曲線C向點(diǎn)P運(yùn)動(dòng),割線PQ在點(diǎn)P附近逼近曲線C,當(dāng)點(diǎn)Q無(wú)限逼近點(diǎn)P時(shí),直線PQ最終就成為經(jīng)過(guò)點(diǎn)P處最逼近曲線的直線l,這條直線l也稱為曲線在點(diǎn)P處的切線。這種方法叫割線逼近切線。

  思考:如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?

  三、數(shù)學(xué)運(yùn)用

  例1 試求在點(diǎn)(2,4)處的切線斜率。

  解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),則割線PQ的斜率為:

  當(dāng)Q沿曲線逼近點(diǎn)P時(shí),割線PQ逼近點(diǎn)P處的切線,從而割線斜率逼近切線斜率;

  當(dāng)Q點(diǎn)橫坐標(biāo)無(wú)限趨近于P點(diǎn)橫坐標(biāo)時(shí),即xQ無(wú)限趨近于2時(shí),kPQ無(wú)限趨近于常數(shù)4。

  從而曲線f(x)=x2在點(diǎn)(2,4)處的切線斜率為4。

  解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:

  當(dāng)?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數(shù)4,從而曲線f(x)=x2,在點(diǎn)(2,4)處的切線斜率為4。

  練習(xí) 試求在x=1處的切線斜率。

  解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:

  當(dāng)?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。

  小結(jié) 求曲線上一點(diǎn)處的切線斜率的一般步驟:

 。1)找到定點(diǎn)P的坐標(biāo),設(shè)出動(dòng)點(diǎn)Q的坐標(biāo);

 。2)求出割線PQ的斜率;

 。3)當(dāng)時(shí),割線逼近切線,那么割線斜率逼近切線斜率。

  思考 如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?

  解 設(shè)

  所以,當(dāng)無(wú)限趨近于0時(shí),無(wú)限趨近于點(diǎn)處的切線的斜率。

  變式訓(xùn)練

  1、已知,求曲線在處的切線斜率和切線方程;

  2、已知,求曲線在處的切線斜率和切線方程;

  3、已知,求曲線在處的切線斜率和切線方程。

  課堂練習(xí)

  已知,求曲線在處的切線斜率和切線方程。

  四、回顧小結(jié)

  1、曲線上一點(diǎn)P處的切線是過(guò)點(diǎn)P的所有直線中最接近P點(diǎn)附近曲線的直線,則P點(diǎn)處的變化趨勢(shì)可以由該點(diǎn)處的切線反映(局部以直代曲)。

  2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點(diǎn)處的切線斜率和方程。

  五、課外作業(yè)

  高中數(shù)學(xué)開(kāi)學(xué)第一課教案11

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能

  (1)掌握畫三視圖的基本技能

  (2)豐富學(xué)生的空間想象力

  2.過(guò)程與方法

  主要通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。

  3.情感態(tài)度與價(jià)值觀

  (1)提高學(xué)生空間想象力

  (2)體會(huì)三視圖的作用

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):畫出簡(jiǎn)單組合體的三視圖

  難點(diǎn):識(shí)別三視圖所表示的空間幾何體

  三、學(xué)法與教學(xué)用具

  1.學(xué)法:觀察、動(dòng)手實(shí)踐、討論、類比

  2.教學(xué)用具:實(shí)物模型、三角板

  四、教學(xué)思路

  (一)創(chuàng)設(shè)情景,揭開(kāi)課題

  “橫看成嶺側(cè)看成峰”,這說(shuō)明從不同的角度看同一物體視覺(jué)的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。

  在初中,我們已經(jīng)學(xué)習(xí)了正方體、長(zhǎng)方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

  (二)實(shí)踐動(dòng)手作圖

  1.講臺(tái)上放球、長(zhǎng)方體實(shí)物,要求學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論;

  2.教師引導(dǎo)學(xué)生用類比方法畫出簡(jiǎn)單組合體的三視圖

  (1)畫出球放在長(zhǎng)方體上的三視圖

  (2)畫出礦泉水瓶(實(shí)物放在桌面上)的三視圖

  學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。

  作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識(shí)了它的基本結(jié)構(gòu)特征后,再動(dòng)手作圖。

  3.三視圖與幾何體之間的相互轉(zhuǎn)化。

  (1)投影出示圖片(課本P10,圖1.2-3)

  請(qǐng)同學(xué)們思考圖中的三視圖表示的幾何體是什么?

  (2)你能畫出圓臺(tái)的三視圖嗎?

  (3)三視圖對(duì)于認(rèn)識(shí)空間幾何體有何作用?你有何體會(huì)?

  教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對(duì)上述問(wèn)題的看法。

  4.請(qǐng)同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。

  (三)鞏固練習(xí)

  課本P12練習(xí)1、2P18習(xí)題1.2A組1

  (四)歸納整理

  請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

  (五)課外練習(xí)

  1.自己動(dòng)手制作一個(gè)底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。

  2.自己制作一個(gè)上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺(tái)模型,并畫出它的三視圖。

  高中數(shù)學(xué)開(kāi)學(xué)第一課教案12

  【教學(xué)目標(biāo)】

  1.知識(shí)與技能

  (1)理解等差數(shù)列的定義,會(huì)應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列:

  (2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過(guò)程:

  (3)會(huì)應(yīng)用等差數(shù)列通項(xiàng)公式解決簡(jiǎn)單問(wèn)題。

  2.過(guò)程與方法

  在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過(guò)程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

  3.情感、態(tài)度與價(jià)值觀

  通過(guò)教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問(wèn)題的過(guò)程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。

  【教學(xué)重點(diǎn)】

 、俚炔顢(shù)列的概念;

 、诘炔顢(shù)列的通項(xiàng)公式

  【教學(xué)難點(diǎn)】

 、倮斫獾炔顢(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義;

 、诘炔顢(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程.

  【學(xué)情分析】

  我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過(guò)一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

  【設(shè)計(jì)思路】

  1、教法

 、賳l(fā)引導(dǎo)法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性.

  ②分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題,調(diào)動(dòng)學(xué)生的積極性.

 、壑v練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).

  2、學(xué)法

  引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問(wèn)題(數(shù)數(shù)問(wèn)題、水庫(kù)水位問(wèn)題、儲(chǔ)蓄問(wèn)題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法.

  【教學(xué)過(guò)程】

  一、創(chuàng)設(shè)情境,引入新課

  1、從0開(kāi)始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

  2、水庫(kù)管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫(kù)的辦法清理水庫(kù)中的雜魚.如果一個(gè)水庫(kù)的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開(kāi)始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位(單位:m)組成一個(gè)什么數(shù)列?

  3、我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息.按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列?

  教師:以上三個(gè)問(wèn)題中的數(shù)蘊(yùn)涵著三列數(shù).

  學(xué)生:

  ①0,5,10,15,20,25,….

  ②18,15.5,13,10.5,8,5.5.

 、10072,10144,10216,10288,10360.

  (設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型.通過(guò)分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識(shí)的自主性,培養(yǎng)學(xué)生的歸納能力.

  二、觀察歸納,形成定義

  ①0,5,10,15,20,25,….

 、18,15.5,13,10.5,8,5.5.

 、10072,10144,10216,10288,10360.

  思考1上述數(shù)列有什么共同特點(diǎn)?

  思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?

  思考3你能將上述的文字語(yǔ)言轉(zhuǎn)換成數(shù)學(xué)符號(hào)語(yǔ)言嗎?

  教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

  學(xué)生:分組討論,可能會(huì)有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

  教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號(hào)角度理解等差數(shù)列的定義.

  (設(shè)計(jì)意圖:通過(guò)對(duì)一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì)到等差數(shù)列的規(guī)律和共同特點(diǎn);一開(kāi)始抓。骸皬牡诙(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對(duì)等差數(shù)列概念的準(zhǔn)確表達(dá).)

  三、舉一反三,鞏固定義

  1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,-1,-2;

  (4)4,7,10,13,16.

  教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問(wèn)題.

  注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0.

  (設(shè)計(jì)意圖:強(qiáng)化學(xué)生對(duì)等差數(shù)列“等差”特征的理解和應(yīng)用).

  2、思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

  (設(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法)

  四、利用定義,導(dǎo)出通項(xiàng)

  1、已知等差數(shù)列:8,5,2,…,求第200項(xiàng)?

  2、已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢?

  教師出示問(wèn)題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評(píng)價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會(huì)歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問(wèn)題的常用方法.

  (設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過(guò)程中,可能會(huì)找到多種不同的解決辦法,教師要逐一點(diǎn)評(píng),并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識(shí).鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)

  五、應(yīng)用通項(xiàng),解決問(wèn)題

  1、判斷100是不是等差數(shù)列2,9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?

  2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

  3、求等差數(shù)列3,7,11,…的第4項(xiàng)和第10項(xiàng)

  教師:給出問(wèn)題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

  學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式

  (設(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會(huì)公式與方程之間的聯(lián)系.初步認(rèn)識(shí)“基本量法”求解等差數(shù)列問(wèn)題.)

  六、反饋練習(xí):教材13頁(yè)練習(xí)1

  七、歸納總結(jié):

  1、一個(gè)定義:

  等差數(shù)列的定義及定義表達(dá)式

  2、一個(gè)公式:

  等差數(shù)列的通項(xiàng)公式

  3、二個(gè)應(yīng)用:

  定義和通項(xiàng)公式的應(yīng)用

  教師:讓學(xué)生思考整理,找?guī)讉(gè)代表發(fā)言,最后教師給出補(bǔ)充

  (設(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識(shí)和掌握基本概念,并靈活運(yùn)用基本概念。)

  【設(shè)計(jì)反思】

  本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過(guò)程中,學(xué)生通過(guò)分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過(guò)程,有助于提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問(wèn)題、學(xué)生探討解決問(wèn)題為途徑,以相互補(bǔ)充展開(kāi)教學(xué),總結(jié)科學(xué)合理的知識(shí)體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率。

【高中數(shù)學(xué)開(kāi)學(xué)第一課教案】相關(guān)文章:

《開(kāi)學(xué)第一課》教案07-29

開(kāi)學(xué)第一課教案07-12

開(kāi)學(xué)第一課的教案02-28

開(kāi)學(xué)第一課的教案05-25

開(kāi)學(xué)第一課經(jīng)典教案09-01

開(kāi)學(xué)第一課教案08-25

開(kāi)學(xué)第一課教案12-31

【精選】開(kāi)學(xué)第一課教案08-31

寒假開(kāi)學(xué)第一課教案小班 小班秋季開(kāi)學(xué)第一課教案02-09

開(kāi)學(xué)第一課班會(huì)的教案06-09