毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

一元二次方程練習(xí)題

時(shí)間:2024-07-15 16:08:48 習(xí)題 我要投稿

一元二次方程練習(xí)題6篇(精選)

  在平平淡淡的日常中,我們最離不開(kāi)的就是練習(xí)題了,學(xué)習(xí)需要做題,是因?yàn)檫@樣一方面可以了解你對(duì)知識(shí)點(diǎn)的掌握,熟練掌握知識(shí)點(diǎn)!同時(shí)做題還可以鞏固你對(duì)知識(shí)點(diǎn)的運(yùn)用!那么一般好的習(xí)題都具備什么特點(diǎn)呢?以下是小編精心整理的一元二次方程練習(xí)題,歡迎大家分享。

一元二次方程練習(xí)題1

  1. 某商場(chǎng)禮品柜臺(tái)元旦期間購(gòu)進(jìn)大量賀年卡,一種賀年卡平均每天可售出500張,每張盈利0.3元.為了盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,調(diào)查發(fā)現(xiàn),如果這種賀年卡的售價(jià)每降低0.1元,那么商場(chǎng)平均每天可多售出100張,商場(chǎng)要想平均每天盈利120元,每張賀年卡應(yīng)降價(jià)多少元?

  2. 小明將1000元存入銀行,定期一年,到期后他取出600元后,將剩下部分(包括利息)繼續(xù)存入銀行,定期還是一年,到期后全部取出,正好是550元,請(qǐng)問(wèn)定期一年的利率是多少?

  3. 一個(gè)正方形的邊長(zhǎng)增加2cm,它的面積增加了40cm2,求這個(gè)正方形原來(lái)的`邊長(zhǎng)?

  4. 用一塊長(zhǎng)方形的鐵片,把它的四角各剪去一個(gè)邊長(zhǎng)為4cm的小方塊,然后把四邊折起來(lái),做成一個(gè)沒(méi)有蓋的盒子,已知鐵片的長(zhǎng)是寬的2倍,做成盒子的容積是1 536cm3,求這塊鐵片的長(zhǎng)和寬.

  5. 我校生物興趣小組的同學(xué)有一塊長(zhǎng)18米、寬12米的矩形試驗(yàn)園.為了便于同學(xué)們參觀(guān),現(xiàn)要開(kāi)辟一橫兩縱三條等寬的小路.要使種植面積為176平方米,小路應(yīng)該多寬?

  6. 張大叔從市場(chǎng)上買(mǎi)回一塊矩形鐵皮,他將此矩形鐵皮的四個(gè)角各剪去一個(gè)邊長(zhǎng)為1米的正方形后,剩下的部分剛好能?chē)梢粋(gè)容積為15m3的無(wú)蓋長(zhǎng)方體箱子,且此長(zhǎng)方體箱子的底面長(zhǎng)比寬多2米,現(xiàn)已知購(gòu)買(mǎi)這種鐵皮每平方米需20元錢(qián),問(wèn)張大叔購(gòu)回這張矩形鐵皮共花了多少元錢(qián)?

一元二次方程練習(xí)題2

  題型1:認(rèn)識(shí)一元二次方程,并能找出各項(xiàng)的系數(shù)

  解法:根據(jù)一元二次方程的概念,這個(gè)不難找,注意ax+bx+c=0,不是一元二次方程,因?yàn)闆](méi)有確定a的范圍,a=0時(shí),它就不是。還有一定要化成一般形式我們?cè)偃ヅ袛唷?/p>

  例題:若方程是(m+2)x|m|+3mx+1=0關(guān)于x的一元二次方程,則( )

  A.m=±2 B.m=2 C.m= -2

  例題:把一元二次方程2x(x﹣1)=(x﹣3)+4化成一般式之后,其二次項(xiàng)系數(shù)與一次項(xiàng)分別是(  )

  A、2,﹣3 B、﹣2,﹣3 C、2,﹣3x D、﹣2,﹣3x

  題型2:方程根的考查

  例題:已知x=2是關(guān)于x的一元二次方程ax2-3bx-5=0的一個(gè)根,則4a-6b的值是 。

  例題:關(guān)于x的方程a(x+m)2+b=0的解是x1=-2,x2=1(a,m,b均為常數(shù),

  a≠0),則方程a(x+m+2)2+b=0的解是_________.

  題型3:利用一元二次方程降次

  解法:一般只要把二次項(xiàng)放在等式的左邊,其它放在等式的右邊,那么二次就降成一次了。

  例題:

  已知m,n是方程x-2x-1=0的兩根,且(2m-4m+a(3n-6n-7)=8,則a的值等于 。

  例題:已知x-x-1=0,則-x+2x+20xx的為 。

  題型4:利用一元二次方程因式分解

  1475486091506914.png

  題型5:整體思想解方程

  解法:用整體思想來(lái)解方程,如果是在實(shí)際問(wèn)題背景中,我們一定要記得檢驗(yàn),看是否會(huì)符合實(shí)際情況。

  例題:已知(x+y)+(x+y)=0,則x+y=___________

  例題:若實(shí)數(shù)a、b滿(mǎn)足(4a+4b) (4a+4b-2)-8=0,則a+b=_______.

  題型6:一元二次方程的解法

  解方程:(1)(y-1)2=2y(y-1)。 (2)2x2+1=3x. (配方法)

  (3)9(x+2)2-16(2x + 3)2=0[來(lái)源2x2-3x=5;

  題型7:根的判別式

  例題:

  已知關(guān)于x的方程kx+(1-k)x-1=0,下列說(shuō)法正確的是( )。

  A.當(dāng)k=0時(shí),方程無(wú)解

  B.當(dāng)k=1時(shí),方程有一個(gè)實(shí)數(shù)解

  C.當(dāng)k=-1時(shí),方程有兩個(gè)相等的`實(shí)數(shù)解

  D.當(dāng)k≠0時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)解

  例題:下列命題:

 、偃鬮=2a+c/2,則一元二次方程ax+bx+c=O必有一根為-2;

 、谌鬭c<0, 則方程 cx+bx+a=O有兩個(gè)不等實(shí)數(shù)根;

  ③若b-4ac=0, 則方程 cx+bx+a=O有兩個(gè)相等實(shí)數(shù)根;

  其中正確的個(gè)數(shù)是( )

  A.O個(gè) B.l個(gè) C.2個(gè) D.3 個(gè)

  例題:已知關(guān)于x的一元二次方程x2+bx+b﹣1=0有兩個(gè)相等的實(shí)數(shù)根,則b的值是 。

  題型8:一元二次方程與幾何的綜合

  例題:已知等腰三角形兩腰長(zhǎng)分別是x2,2x+3,底為2,求三角形的周長(zhǎng)

  例題:已知關(guān)于x的方程x2-(2a-1)x+4(a-1)=0的兩個(gè)根是斜邊長(zhǎng)為5的直角三角形的兩條直角邊的長(zhǎng),求這個(gè)直角三角形的面積。

  題型9:一元二次方程與幾何的綜合

  例題:已知等腰三角形兩腰長(zhǎng)分別是x2,2x+3,底為2,求三角形的周長(zhǎng)

  例題:已知關(guān)于x的方程x2-(2a-1)x+4(a-1)=0的兩個(gè)根是斜邊長(zhǎng)為5的直角三角形的兩條直角邊的長(zhǎng),求這個(gè)直角三角形的面積。

一元二次方程練習(xí)題3

  【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問(wèn)題時(shí)出現(xiàn)的典型錯(cuò)例加以剖析,幫助學(xué)生找出產(chǎn)生錯(cuò)誤的原因和糾正錯(cuò)誤的方法,使學(xué)生在解題時(shí)少犯錯(cuò)誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。

  【課前練習(xí)】

  1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時(shí),方程為一元一次方程;當(dāng) a_____時(shí),方程為一元二次方程。

  2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)△_______時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,當(dāng)△________時(shí),方程沒(méi)有實(shí)數(shù)根。

  【典型例題】

  例1 下列方程中兩實(shí)數(shù)根之和為2的方程是()

  (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

  錯(cuò)答: B

  正解: C

  錯(cuò)因剖析:由根與系數(shù)的`關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無(wú)實(shí)數(shù)根,方程C合適。

  例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個(gè)實(shí)數(shù)根之和大于-4,則k的取值范圍是( )

  (A) k-1 (B) k0 (c) -10 (D) -1≤k0

  錯(cuò)解 :B

  正解:D

  錯(cuò)因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0

  例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個(gè)不相等的實(shí)根,求k的取值范圍。

一元二次方程練習(xí)題4

  1:某種服裝,平均每天可以銷(xiāo)售20件,每件盈利44元,在每件降價(jià)幅度不超過(guò)10元的情況下,若每件降價(jià)1元,則每天可多售出5件,如果每天要盈利1600元,每件應(yīng)降價(jià)多少元

  解:設(shè)沒(méi)件降價(jià)為x,則可多售出5x件,每件服裝盈利44-x元,

  依題意x10

  (44-x)(20+5x)=1600

  展開(kāi)后化簡(jiǎn)得:x-44x+144=0

  即(x-36)(x-4)=0

  x=4或x=36(舍)

  即每件降價(jià)4元

  要找準(zhǔn)關(guān)系式

  2.游行隊(duì)伍有8行12列,后又增加了69人,使得隊(duì)伍增加的行列數(shù)相同,增加了多少行多少列

  解:設(shè)增加x (8+x)(12+x)=96+69 x=3

  增加了3行3列

  3.某化工材料經(jīng)售公司購(gòu)進(jìn)了一種化工原料,進(jìn)貨價(jià)格為每千克30元.物價(jià)部門(mén)規(guī)定其銷(xiāo)售單價(jià)不得高于每千克70元,也不得低于30元.市場(chǎng)調(diào)查發(fā)現(xiàn):?jiǎn)蝺r(jià)每千克70元時(shí)日均銷(xiāo)售60kg;單價(jià)每千克降低一元,日均多售2kg。在銷(xiāo)售過(guò)程中,每天還要支出其他費(fèi)用500元(天數(shù)不足一天時(shí),按一天計(jì)算).如果日均獲利1950元,求銷(xiāo)售單價(jià)

  解: (1)若銷(xiāo)售單價(jià)為x元,則每千克降低了(70-x)元,日均多售出2(70-x)千克,日均銷(xiāo)售量為[60+2(70-x)]千克,每千克獲利(x-30)元.

  依題意得:

  y=(x-30)[60+2(70-x)]-500

  =-2x^2+260x-6500

  (30=x=70)

  (2)當(dāng)日均獲利最多時(shí):?jiǎn)蝺r(jià)為65元,日均銷(xiāo)售量為60+2(70-65)=70kg,那么獲總利為1950*7000/70=195000元,當(dāng)銷(xiāo)售單價(jià)最高時(shí):?jiǎn)蝺r(jià)為70元,日均銷(xiāo)售60kg,將這批化工原料全部售完需7000/60約等于117天,那么獲總利為(70-30)*7000-117*500=221500

  元,而221500195000時(shí)且221500-195000=26500元.

  銷(xiāo)售單價(jià)最高時(shí)獲總利最多,且多獲利26500元.

  4.一輛警車(chē)停在路邊,當(dāng)警車(chē)發(fā)現(xiàn)一輛一8M/S的速度勻速行駛的貨車(chē)有違章行為,決定追趕,經(jīng)過(guò)2.5s,警車(chē)行駛100m追上貨車(chē).試問(wèn)

  (1)從開(kāi)始加速到追上貨車(chē),警車(chē)的速度平均每秒增加多少m

  (2)從開(kāi)始加速到行駛64m處是用多長(zhǎng)時(shí)間

  解:

  2.5*8=20 100-20=80 80/8=10

  100/【(0+10a)/2】=10解方程為2

  64/【(0+2a)/2】=a解方程為8

  5.用一個(gè)白鐵皮做罐頭盒,每張鐵皮可制作25個(gè)盒身,或制作盒底40個(gè),一個(gè)盒身和兩個(gè)盒底配成一套罐頭盒,F(xiàn)在有36張白鐵皮,用多少?gòu)堉坪猩恚嗌購(gòu)堉坪械卓梢允购猩砗秃械渍门涮?/p>

  6、解:設(shè)用 X 張制罐身 用 Y 張制罐底 則X+Y=36 X=36-Y 25X=40Y/2 X=4Y/5 4Y/5=36-Y Y=20 X=16

  7.現(xiàn)有長(zhǎng)方形紙片一張,長(zhǎng)19cm,寬15cm,需要剪去邊長(zhǎng)多少的小正方形才能做成底面積為77平方cm的無(wú)蓋長(zhǎng)方形的紙盒

  解:設(shè)邊長(zhǎng)x

  則(19-2x)(15-2x)=77

  4x^2-68x+208=0

  x^2-17x+52=0

  (x-13)(x-4)=0,當(dāng)x=13時(shí)19-2x0不合題意,舍去

  故x=4

  8. 某超市一月分銷(xiāo)售額是20萬(wàn)元,以后每月的利潤(rùn)都比上個(gè)月的利潤(rùn)增長(zhǎng)10%,則二月分銷(xiāo)售額是多少 3月的銷(xiāo)售額是多少

  解:二月20*(1+0.1)=22 三月22*(1+0.1)=24.2

  9. 某企業(yè)20xx年利潤(rùn)為50萬(wàn)元,如果以后每年的利潤(rùn)都比上年的利潤(rùn)增長(zhǎng)x%。那么20xx年的年利潤(rùn)將達(dá)到多少萬(wàn)元

  解:50*(1+x%)^2

  10. 某廠(chǎng)經(jīng)過(guò)兩年體制改革和技術(shù)革新,生產(chǎn)效率翻了一番,求平均每年的增長(zhǎng)率(精確到0.1%)

  解:設(shè)平均每年的增長(zhǎng)率x

  (x+1)^2=2

  x=0.414

  11. 一拖拉機(jī)廠(chǎng),一月份生產(chǎn)出甲、乙兩種新型拖拉機(jī),其中乙型16臺(tái),從二月份起,甲型每月增產(chǎn)10臺(tái),乙型每月按相同的增長(zhǎng)率逐月遞增,又知二月份甲、乙兩型的產(chǎn)量之比為3:2,三月份甲、乙兩型產(chǎn)量之和為65臺(tái),求乙型拖拉機(jī)每月增長(zhǎng)率及甲型拖拉機(jī)一月份的產(chǎn)量。

  解:設(shè)乙的增長(zhǎng)率為X,那么二月乙就是16(1+X)臺(tái),甲就是16(1+X)32;三月乙就是16(1+X)臺(tái),甲就是16(1+X)32+10臺(tái),所以列出算式16(1+X)+16(1+X)32+10=65 求解,然后可以分別算出一月二月乙的產(chǎn)量,然后就可以解得甲的產(chǎn)量了17.

  12.如圖,出發(fā)沿BC勻速向點(diǎn)C運(yùn)動(dòng)。已知點(diǎn)N的速度每秒比點(diǎn)M快1cm,兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)3秒后相距10cm。求點(diǎn)M和點(diǎn)N運(yùn)動(dòng)的速度。

  解:設(shè)M速度x,則N為(x+1),(BC3x)的平方加上3(x+1)的平方=10的平方,解得x=1或x=5/3又因?yàn)锳C=7,所以x=1,M的速度為1m/s,N的速度2m/s

  13.用長(zhǎng)為100cm的金屬絲做一個(gè)矩形框.李明做的矩形框的面積為400平方厘米,而王寧做的矩形框的面積為600平方厘米,你知道這是為什么嗎

  解:設(shè)矩形一邊長(zhǎng)為X厘米,則相鄰一邊長(zhǎng)為1/2(100-2X)厘米,即(50-X)厘米,依題意得:

  X*(50-X)=400 解之得:X1=40,X2=10;

  X*(50-X)=600 解之得:X1=20,X2=30;

  所以李明做的矩形的長(zhǎng)是40厘米,寬是10厘米;

  王寧做的矩形的長(zhǎng)是30厘米,寬是20厘米。

  14.某商品進(jìn)價(jià)為每件40元,如果售價(jià)為每件50元,每個(gè)月可賣(mài)出210件,如果售價(jià)超過(guò)50元,但不超過(guò)80元,每件商品的售價(jià)每上漲10元,每個(gè)月少賣(mài)1件,如果售價(jià)超過(guò)80元后,若再漲價(jià),每件商品的售價(jià)每漲1元,每個(gè)月少賣(mài)3件。設(shè)該商品的售價(jià)為X元。

  (1)、每件商品的利潤(rùn)為 元。若超過(guò)50元,但不超過(guò)80元,每月售 件。

  若超過(guò)80元,每月售 件。(用X的式子填空。)

  (2)、若超過(guò)50元但是不超過(guò)80元,售價(jià)為多少時(shí) 利潤(rùn)可達(dá)到7200元

  (3)、若超過(guò)80元,售價(jià)為多少時(shí)利潤(rùn)為7500元。

  解: 1)x-40 210-(x-40)10 210-(x-40)10-3(x-80)

  (2)設(shè)售價(jià)為a (a-40)[210-(a-40)10=7200

  (3)設(shè)售價(jià)為b (b-40)[210-(b-40)10-3(b-80)=7500 (第2 、3問(wèn)也可設(shè)該商品的售價(jià)為X1 x2元)

  15.某商場(chǎng)銷(xiāo)售一批襯衫,平均每天可出售30件,每件賺50元,為擴(kuò)大銷(xiāo)售,加盈利,盡量減少庫(kù)存,商場(chǎng)決定降價(jià),如果每件降1元,商場(chǎng)平均每天可多賣(mài)2件,若商場(chǎng)平均每天要賺2100元,問(wèn)襯衫降價(jià)多少元

  解:襯衫降價(jià)x元

  2100=(50-x)(30+2x)=1500+70x-x^2

  x^2-70x+600=0

  (x-10)(x-60)=0

  x-60=0 x=6050 舍去

  x-10=0 x=10

  16.在一塊面積為888平方厘米的矩形材料的四角,各剪掉一個(gè)大小相同的正方形(剪掉的正方形作廢料處理,不再使用),做成一個(gè)無(wú)蓋的長(zhǎng)方體盒子,要求盒子的長(zhǎng)為25cm,寬為高的2倍,盒子的寬和高應(yīng)為多少

  解:設(shè)剪去正方形的邊長(zhǎng)為x,x同時(shí)是盒子的高,則盒子寬為2x;

  矩形材料的尺寸:

  長(zhǎng):25+2x

  寬:4x;

  (25+2x)*4x=888,

  解得:x1=6,x2=-18.5(舍去)

  盒子的寬:12cm;盒子的高:6cm。

  17.某公司生產(chǎn)開(kāi)發(fā)了960件新產(chǎn)品,需要經(jīng)過(guò)加工后才能投放市場(chǎng),現(xiàn)在有A,B兩個(gè)工廠(chǎng)都想?yún)⒓蛹庸み@批產(chǎn)品,已知A工廠(chǎng)單獨(dú)加工這批產(chǎn)品比B工廠(chǎng)單獨(dú)加工這批產(chǎn)品要多用20天,而B(niǎo)工廠(chǎng)每天比A工廠(chǎng)多加工8件產(chǎn)品,公司需要支付給A工廠(chǎng)每天80元的加工費(fèi),B工廠(chǎng)每天120元的.加工費(fèi)。

  1. A,B兩個(gè)工廠(chǎng)每天各能加工多少件新產(chǎn)品

  2. 公司制定產(chǎn)品方案如下:可以由每個(gè)廠(chǎng)家單獨(dú)完成;也可以由兩個(gè)廠(chǎng)家同時(shí)合作完成。在加工過(guò)程中,公司需要派一名工程師每天到廠(chǎng)進(jìn)行技術(shù)指導(dǎo),并負(fù)擔(dān)每天5元的午餐補(bǔ)助費(fèi)。請(qǐng)幫助公司選擇哪家工廠(chǎng)加工比較省錢(qián),并說(shuō)明理由。

  解:1.設(shè)A每天加工x件產(chǎn)品,則B每天加工x+8件產(chǎn)品

  由題意得960/x-960/(x+8)=20

  解得x=16件

  所以A每天加工16件產(chǎn)品,則B每天加工24件產(chǎn)品

  2.設(shè)讓A加工x件,B加工960-x件

  則公司費(fèi)用為x/16*(80+5)+(960-x)/24*(120+5)

  化簡(jiǎn)為5/48*x+5000

  所以x=0時(shí)最省錢(qián),即全讓B廠(chǎng)加工

  18.一元二次方程解應(yīng)用題 將進(jìn)貨單價(jià)為40元的商品按50元出售時(shí),能賣(mài)500個(gè),如果該商品每漲價(jià)1元,其銷(xiāo)售量就減少10個(gè)。商店為了賺取8000元的利潤(rùn),這種商品的售價(jià)應(yīng)定為多少應(yīng)進(jìn)貨多少

  解:利潤(rùn)是標(biāo)價(jià)-進(jìn)價(jià)

  設(shè)漲價(jià)x元,則:

  (10+x)(500-10x)=8000

  5000-100x+500x-10x^2=8000

  x^2-40x+300=0

  (x-20)^2=100

  x-20=10或x-20=-10

  x=30或x=10

  經(jīng)檢驗(yàn),x的值符合題意

  所以售價(jià)為80元或60元

  所以應(yīng)進(jìn)8000/(10+x)=200個(gè)或400個(gè)

  所以應(yīng)標(biāo)價(jià)為80元或60元

  應(yīng)進(jìn)200個(gè)或400個(gè)

  19.參加一次聚會(huì)的每?jī)蓚(gè)人都握了一次手,所有人共握手10次,有多少人參加聚會(huì)

  34.參加一次足球聯(lián)賽的每?jī)蓚(gè)隊(duì)之間都進(jìn)行兩次比賽,共要比賽90場(chǎng),共有多少個(gè)隊(duì)參加比賽

  35.要組織一次籃球聯(lián)賽,賽制為單循環(huán)形式(每?jī)蓚(gè)隊(duì)之間賽一場(chǎng)),計(jì)劃安排15場(chǎng)比賽,應(yīng)邀請(qǐng)多少個(gè)球隊(duì)參加比賽

  解:34、n(n-1)2=10

  n=5

  35、x(x-1)2*2=90

  x=10

  36、y(y-1)2=15

  y=6

  20.在某場(chǎng)象棋比賽中,每位選手和其他選手賽一場(chǎng),勝者記2分,敗者記0分,平局各記1分,今有四位統(tǒng)計(jì)員統(tǒng)計(jì)了全部選手的得分之和分別是20xx分、20xx分、20xx分、20xx分,經(jīng)核實(shí),只有一位統(tǒng)計(jì)員的結(jié)果是正確的,問(wèn)這場(chǎng)比賽有幾位選手參加

  解: 無(wú)論如何,每一局兩人合計(jì)都應(yīng)得2分,所以最終的總得分一定是偶數(shù),由于20xx、20xx、20xx都是奇數(shù),所以都不符合題意,所以正確的是第三個(gè)記分員

  設(shè)有x人參加,則一共比了x(x-1)/2局

  你的數(shù)字似乎有錯(cuò),請(qǐng)確認(rèn)是否為20xx,而不是20xx(2080得不出整數(shù)解)

  x(x-1)/2=20xx/2

  x-x-20xx=0

  (x-46)(x+45)=0

  x1=46,x2=-45(舍)

  答:一共有46位選手參加.

  21.將進(jìn)貨單價(jià)為40元的商品按50元出售時(shí),能賣(mài)出500個(gè),已知該商品每降價(jià)1元,其銷(xiāo)售量就要減少10個(gè),為了賺8000元利潤(rùn),售價(jià)應(yīng)定為多少這時(shí)進(jìn)貨應(yīng)為多少個(gè)

  22.某商店如果將進(jìn)貨價(jià)8元的商品按每件10元出售,每天可銷(xiāo)售200件,現(xiàn)采用提高售價(jià),減少進(jìn)貨量的方法增加利潤(rùn),已知這種商品每漲0.5元,其銷(xiāo)售量就可以減少10元,問(wèn)應(yīng)將售價(jià)定為多少時(shí),才能使所賺利潤(rùn)最大,并求出最大利潤(rùn)

  23解:設(shè)售價(jià)應(yīng)定為x元,根據(jù)題意列方程得 整理得

  (x-60)(x-80)=0

  解得x1=60,x2=80

  答:當(dāng)x1=60時(shí),進(jìn)貨量為400個(gè)

  當(dāng)x2=80時(shí),進(jìn)貨量為200個(gè)

  44解:由題意列方程得,a(350-10a)-21(350-10a)=400

  (a-25)(a-31)=0

  解得,a1=25,a2=31

  ∵ a2=31不合題意,舍去

  350-10a=100

  答:需要賣(mài)出100品,商品售價(jià)25元

  分析:根據(jù)表格可以看出每件的售價(jià)每降1元時(shí),每日就多銷(xiāo)售1件,根據(jù)這個(gè)隱含條件就可以得出此類(lèi)型題和以上的練習(xí)非常相似了

  45.解:若定價(jià)為m元時(shí),售出的商品為

  [70-(m-130)]件

  列方程得

  整理得

  m1=m2=160

  答:m的值是160

  24解:設(shè)售價(jià)定為x元,則每件的利潤(rùn)為

  (x-8)元,銷(xiāo)售量為 件,列式得(x-8)

  整理得,

  即當(dāng)x=14時(shí),所得利潤(rùn)有最大值,最大利潤(rùn)是720元

一元二次方程練習(xí)題5

  一、 選擇題(每小題3分,共30分)

  1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )

  A、(x-p)2=5 B、(x-p)2=9

  C、(x-p+2)2=9 D、(x-p+2)2=5

  2、已知m是方程x2-x-1=0的一個(gè)根,則代數(shù)式m2-m的值等于( )

  A、-1 B、0 C、1 D、2

  3、若、是方程x2+2x-20xx=0的兩個(gè)實(shí)數(shù)根,則2+3+的值為( )

  A、20xx B、20xx C、-20xx D、4010

  4、關(guān)于x的方程kx2+3x-1=0有實(shí)數(shù)根,則k的取值范圍是( )

  A、k- B、k- 且k0

  C、k- D、k- 且k0

  5、關(guān)于x的一元二次方程的兩個(gè)根為x1=1,x2=2,則這個(gè)方程是( )

  A、 x2+3x-2=0 B、x2-3x+2=0

  C、x2-2x+3=0 D、x2+3x+2=0

  6、已知關(guān)于x的方程x2-(2k-1)x+k2=0有兩個(gè)不相等的實(shí)根,那么k的最大整數(shù)值是( )

  A、-2 B、-1 C、0 D、1

  7、某城20xx年底已有綠化面積300公頃,經(jīng)過(guò)兩年綠化,綠化面積逐年增加,到20xx年底增加到363公頃,設(shè)綠化面積平均每年的增長(zhǎng)率為x,由題意所列方程正確的是( )

  A、300(1+x)=363 B、300(1+x)2=363

  C、300(1+2x)=363 D、363(1-x)2=300

  8、甲、乙兩個(gè)同學(xué)分別解一道一元二次方程,甲因把一次項(xiàng)系數(shù)看錯(cuò)了,而解得方程兩根為-3和5,乙把常數(shù)項(xiàng)看錯(cuò)了,解得兩根為2+ 和2- ,則原方程是( )

  A、 x2+4x-15=0 B、x2-4x+15=0

  C、x2+4x+15=0 D、x2-4x-15=0

  9、若方程x2+mx+1=0和方程x2-x-m=0有一個(gè)相同的實(shí)數(shù)根,則m的值為( )

  A、2 B、0 C、-1 D、

  10、已知直角三角形x、y兩邊的長(zhǎng)滿(mǎn)足|x2-4|+ =0,則第三邊長(zhǎng)為( )

  A、 2 或 B、 或2

  C、 或2 D、 、2 或

  二、 填空題(每小題3分,共30分)

  11、若關(guān)于x的方程2x2-3x+c=0的一個(gè)根是1,則另一個(gè)根是 .

  12、一元二次方程x2-3x-2=0的解是 .

  13、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是 .

  14、等腰△ABC中,BC=8,AB、AC的長(zhǎng)是關(guān)于x的.方程x2-10x+m=0的兩根,則m的值是 .

  15、20xx年某市人均GDP約為20xx年的1.2倍,如果該市每年的人均GDP增長(zhǎng)率相同,那么增長(zhǎng)率為 .

  16、科學(xué)研究表明,當(dāng)人的下肢長(zhǎng)與身高之比為0.618時(shí),看起來(lái)最美,某成年女士身高為153cm,下肢長(zhǎng)為92cm,該女士穿的高根鞋鞋根的最佳高度約為 cm.(精確到0.1cm)

  17、一口井直徑為2m,用一根竹竿直深入井底,竹竿高出井口0.5m,如果把竹竿斜深入井口,竹竿剛好與井口平,則井深為 m,竹竿長(zhǎng)為 m.

  18、直角三角形的周長(zhǎng)為2+ ,斜邊上的中線(xiàn)為1,則此直角三角形的面積為 .

  19、如果方程3x2-ax+a-3=0只有一個(gè)正根,則 的值是 .

  20、已知方程x2+3x+1=0的兩個(gè)根為、,則 + 的值為 .

  三、 解答題(共60分)

  21、解方程(每小題3分,共12分)

  (1)(x-5)2=16 (2)x2-4x+1=0

  (3)x3-2x2-3x=0 (4)x2+5x+3=0

  22、(8分)已知:x1、x2是關(guān)于x的方程x2+(2a-1)x+a2=0的兩個(gè)實(shí)數(shù)根,且(x1+2)(x2+2)=11,求a的值.

  23、(8分)已知:關(guān)于x的方程x2-2(m+1)x+m2=0

  (1) 當(dāng)m取何值時(shí),方程有兩個(gè)實(shí)數(shù)根?

  (2) 為m選取一個(gè)合適的整數(shù),使方程有兩個(gè)不相等的實(shí)數(shù)根,并求這兩個(gè)根.

  24、(8分)已知一元二次方程x2-4x+k=0有兩個(gè)不相等的實(shí)數(shù)根

  (1) 求k的取值范圍

  (2) 如果k是符合條件的最大整數(shù),且一元二次方程x2-4x+k=0與x2+mx-1=0有一個(gè)相同的根,求此時(shí)m的值.

  25、(8分)已知a、b、c分別是△ABC中A、B、C所對(duì)的邊,且關(guān)于x的方程(c-b)x2+2(b-a)x+(a-b)=0有兩個(gè)相等的實(shí)數(shù)根,試判斷△ABC的形狀.

  26、(8分)某工程隊(duì)在我市實(shí)施棚戶(hù)區(qū)改造過(guò)程中承包了一項(xiàng)拆遷工程,原計(jì)劃每天拆遷1250m2,因?yàn)闇?zhǔn)備工作不足,第一天少拆遷了20%,從第二天開(kāi)始,該工程隊(duì)加快了拆遷速度,第三天拆遷了1440m2

  求:(1)該工程隊(duì)第二天第三天每天的拆遷面積比前一天增長(zhǎng)的百分?jǐn)?shù)相同,求這個(gè)百分?jǐn)?shù).

  27、(分)某水果批發(fā)商場(chǎng)經(jīng)銷(xiāo)一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每千克漲價(jià)1元,日銷(xiāo)售量將減少20千克

  (1) 現(xiàn)該商場(chǎng)要保證每天盈利6000元,同時(shí)又要顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?

  (2) 若該商場(chǎng)單純從經(jīng)濟(jì)角度看,每千克這種水果漲價(jià)多少元,能使商場(chǎng)獲利最多?

  一元二次方程單元測(cè)試題參考答案

  一、 選擇題

  1~5 BCBCB 6~10 CBDAD

  提示:3、∵是方程x2+2x-20xx=0的根,2+2=20xx

  又+=-2 2+3+=20xx-2=20xx

  二、 填空題

  11~15 4 25或16 10%

  16~20 6.7 , 4 3

  提示:14、∵AB、AC的長(zhǎng)是關(guān)于x的方程x2-10x+m=0的兩根

  在等腰△ABC中

  若BC=8,則AB=AC=5,m=25

  若AB、AC其中之一為8,另一邊為2,則m=16

  20、∵△=32-411=50

  又+=-30,0,0,0

  三、解答題

  21、(1)x=9或1(2)x=2 (3)x=0或3或-1

  (4)

  22、解:依題意有:x1+x2=1-2a x1x2=a2

  又(x1+2)(x2+2)=11 x1x2+2(x1+x2)+4=11

  a2+2(1-2a)-7=0 a2-4a-5=0

  a=5或-1

  又∵△=(2a-1)2-4a2=1-4a0

  a

  a=5不合題意,舍去,a=-1

  23、解:(1)當(dāng)△0時(shí),方程有兩個(gè)實(shí)數(shù)根

  [-2(m+1)]2-4m2=8m+40 m-

  (2)取m=0時(shí),原方程可化為x2-2x=0,解之得x1=0,x2=2

  24、解:(1)一元二次方程x2-4x+k=0有兩個(gè)不相等的實(shí)數(shù)根

  △=16-4k0 k4

  (2)當(dāng)k=3時(shí),解x2-4x+3=0,得x1=3,x2=1

  當(dāng)x=3時(shí),m= - ,當(dāng)x=1時(shí),m=0

  25、解:由于方程為一元二次方程,所以c-b0,即bc

  又原方程有兩個(gè)相等的實(shí)數(shù)根,所以應(yīng)有△=0

  即4(b-a)2-4(c-b)(a-b)=0,(a-b)(a-c)=0,

  所以a=b或a=c

  所以是△ABC等腰三角形

  26、解:(1)1250(1-20%)=1000(m2)

  所以,該工程隊(duì)第一天拆遷的面積為1000m2

  (2)設(shè)該工程隊(duì)第二天,第三天每天的拆遷面積比前一天增長(zhǎng)的百分?jǐn)?shù)是x,則

  1000(1+x)2=1440,解得x1=0.2=20%,x2=-2.2,(舍去),所以,該工程隊(duì)第二天、第三天每天的拆遷面積比前一天增長(zhǎng)的百分?jǐn)?shù)是20%.

  27、解:(1)設(shè)每千克應(yīng)漲價(jià)x元,則(10+x)(500-20x)=6000

  解得x=5或x=10,為了使顧客得到實(shí)惠,所以x=5

  (2)設(shè)漲價(jià)x元時(shí)總利潤(rùn)為y,則

  y=(10+x)(500-20x)=-20x2+300x+5000=-20(x-7.5)2+6125

  當(dāng)x=7.5時(shí),取得最大值,最大值為6125

  答:(1)要保證每天盈利6000元,同時(shí)又使顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)5元.

  (2)若該商場(chǎng)單純從經(jīng)濟(jì)角度看,每千克這種水果漲價(jià)7.5元,能使商場(chǎng)獲利最多.

一元二次方程練習(xí)題6

  1. 列方程解應(yīng)用題

  汽車(chē)產(chǎn)業(yè)的發(fā)展,有效促進(jìn)我國(guó)現(xiàn)代化建設(shè).某汽車(chē)銷(xiāo)售公司20xx年盈利500萬(wàn)元,到20年盈利260萬(wàn)元,且從20xx年到20年,每年盈利的年增長(zhǎng)率相同.

  (1)該公司20xx年到20年每年盈利的年增長(zhǎng)率是多少?

  (2)若該公司盈利的年增長(zhǎng)率繼續(xù)保持不變,預(yù)計(jì)202年盈利多少萬(wàn)元?

  2. 某漁民準(zhǔn)備在石臼湖承包一塊正方形水域圍網(wǎng)養(yǎng)魚(yú),通過(guò)調(diào)查得知:在該正方形水域四周的圍網(wǎng)費(fèi)用平均每千米0.25萬(wàn)元,上交承包費(fèi)、購(gòu)買(mǎi)魚(yú)苗、飼料和魚(yú)藥等開(kāi)支每平方千米需0.5萬(wàn)元.政府為鼓勵(lì)漁民發(fā)展水產(chǎn)養(yǎng)殖,每位承包戶(hù)補(bǔ)貼0.5萬(wàn)元.預(yù)計(jì)每平方千米養(yǎng)的魚(yú)可售得4.5萬(wàn)元.若該漁民期望養(yǎng)魚(yú)當(dāng)年獲得凈收益3.5萬(wàn)元,你應(yīng)建議該漁民承包多大面積的水域?

  3. 一個(gè)兩位數(shù)等于它的`個(gè)位數(shù)字的平方,且個(gè)位數(shù)字比十位數(shù)字大3,求這個(gè)兩位數(shù).

  4. 某城市現(xiàn)有綠化面積200萬(wàn)平方米,計(jì)劃用兩年的時(shí)間將綠化面積增加到288萬(wàn)平方米,求每年的平均增長(zhǎng)率是多少?

  5. 在△ABC中,∠C=90°,點(diǎn)P從B點(diǎn)開(kāi)始沿BC邊向點(diǎn)C以cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)C開(kāi)始沿CA邊向點(diǎn)C以2cm/s的速度移動(dòng).如果P,Q分別從A,B同時(shí)出發(fā),經(jīng)幾秒鐘,使△PQC的面積等于8cm2?

  6. 一種商品經(jīng)連續(xù)兩次降價(jià)后,價(jià)格是原來(lái)的,若兩次降價(jià)的百分率相同,則這個(gè)百分率為().

【一元二次方程練習(xí)題】相關(guān)文章:

一元二次方程練習(xí)題05-14

一元二次方程練習(xí)題10-26

一元二次方程練習(xí)題07-15

一元二次方程練習(xí)題(3篇)11-04

九年級(jí)一元二次方程練習(xí)題及參考答案08-07

九年級(jí)數(shù)學(xué)一元二次方程的應(yīng)用練習(xí)題09-27

《一元二次方程》教案及反思11-02

《一元二次方程》教學(xué)反思03-30

一元二次方程教學(xué)反思03-22

《一元二次方程的解法》說(shuō)課稿07-07