白馬山學校 李道良
教學內容:抽屜原理
教學目標:
1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2、通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
3、通過“抽屜原理”的靈活應用感受數(shù)學的魅力。
教學重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
教學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教學過程
一、 游戲引入
3個人坐兩個座位,3人都要坐下,一定有一個座位上至少坐了2個人。
這其中蘊含了有趣的數(shù)學原理,這節(jié)課我們一起學習研究。
二、新知探究
1、把4枝鉛筆放進3個文具盒里,不管怎么放,總有一個文具盒里至少放進( )枝鉛筆先猜一猜,再動手放一放,看看有哪些不同方法。用自己的方法記錄(4,0,0) (3,1,0) (2,2,0) (2,1,1)你有什么發(fā)現(xiàn)?
不管怎么放總有一個文具盒里至少放進2枝鉛筆 ?傆惺鞘裁匆馑?至少是什么意思2、思考
有沒有一種方法不用擺放就可以知道至少數(shù)是多少呢?
1、3人坐2個位子,總有一個座位上至少坐了2個人2、4枝鉛筆放進3個文具盒中,總有一個文具盒中至少放了2枝鉛筆5枝鉛筆放進4個文具盒中,
6枝鉛筆放進5個文具盒中。
99支鉛筆放進98個文具盒中。
是否都有一個文具盒中
至少放進2枝鉛筆呢?
這是為什么?可以用算式表達嗎?
4、如果是5枝鉛筆放到3個文具盒里,總有一個文具盒至少放進幾枝鉛筆?把7枝筆放進2個文具盒里呢?
8枝筆放進2個文具盒呢?
9枝筆放進3個文具盒呢?至少數(shù)=上+余數(shù)嗎?
三、小試牛刀
1、7只鴿子飛回5個鴿舍,至少有幾只鴿子要飛進同一個鴿舍里?2、從撲克牌中取出兩張王牌,在剩下的52張中任意抽出5張,至少有幾張是同花色的?四、數(shù)學小知識
數(shù)學小知識:抽屜原理的由來最先發(fā)現(xiàn)這些規(guī)律的人是誰呢?最先是由19世紀的德國數(shù)學家狄里克雷運用于解決數(shù)學問題的,后人們?yōu)榱思o念他從這么平凡的事情中發(fā)現(xiàn)的規(guī)律,就把這個規(guī)律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鴿巢原理”,還把它叫做 “抽屜原理”。五、智慧城堡
1、把13只小兔子關在5個籠子里,至少有多少只兔子要關在同一個籠子里? 2、咱們班共59人,至少有幾人是同一屬相?3、張叔叔參加飛鏢比賽,投了5鏢,鏢鏢都中,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?4、六年級四個班的學生去春游,自由活時有6個同學在一起,可以肯定, 。
為什么?六、小結
這節(jié)課你有什么收獲?
七、作業(yè):課后練習