毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

小學(xué)數(shù)學(xué)總復(fù)習(xí)專題講解及訓(xùn)練(九) 教案教學(xué)設(shè)計(jì)(人教新課標(biāo)六年級(jí)總復(fù)習(xí))

發(fā)布時(shí)間:2017-11-24 編輯:互聯(lián)網(wǎng) 手機(jī)版

 

教學(xué)內(nèi)容:

    期中復(fù)習(xí)及考前模擬

復(fù)習(xí)要點(diǎn):

(一)數(shù)與代數(shù)

1、百分?jǐn)?shù)的應(yīng)用

百分?jǐn)?shù)的應(yīng)用是在六年級(jí)(上冊(cè))認(rèn)識(shí)百分?jǐn)?shù)的基礎(chǔ)上編排的,是本冊(cè)教材的重點(diǎn)內(nèi)容之一。要聯(lián)系實(shí)際解決一些求一個(gè)數(shù)比另一個(gè)數(shù)多(或少)百分之幾的問(wèn)題,解決較簡(jiǎn)單的有關(guān)納稅、利息、折扣的問(wèn)題,解決已知一個(gè)數(shù)的百分之幾是多少,求這個(gè)數(shù)的問(wèn)題。通過(guò)這些內(nèi)容的教學(xué),能讓學(xué)生進(jìn)一步理解百分?jǐn)?shù)的意義,學(xué)會(huì)在日常生活中應(yīng)用百分?jǐn)?shù)。

2、比例的有關(guān)知識(shí)

比例的知識(shí)有比例的意義、比例的基本性質(zhì)和解比例。這些知識(shí)有助于理解圖形的放大與縮小,能用來(lái)解決有關(guān)比例尺的問(wèn)題。

3、成正比例和成反比例的量

教學(xué)正比例和反比例,著重理解正比例的意義和反比例的意義,讓學(xué)生在現(xiàn)實(shí)的情境中作出相應(yīng)的判斷。根據(jù)《標(biāo)準(zhǔn)》的精神,教材適當(dāng)加強(qiáng)了正比例關(guān)系圖像的教學(xué),不再安排解答正比例或反比例的應(yīng)用題。 

(二)空間與圖形

1、圓柱和圓錐

圓柱與圓錐是本冊(cè)教材的又一個(gè)重點(diǎn)內(nèi)容,包括圓柱和圓錐的形狀特征,圓柱的表面積及計(jì)算方法,圓柱和圓錐的體積及計(jì)算方法等知識(shí)。

2、圖形的放大或縮小

圖形的放大和縮小是小學(xué)數(shù)學(xué)新增加的教學(xué)內(nèi)容,讓學(xué)生初步了解圖形可以按一定的比例發(fā)生大小變換。這個(gè)內(nèi)容安排在第三單元里,結(jié)合比例的知識(shí)進(jìn)行教學(xué)。

3、確定位置等內(nèi)容

確定位置也是新增的教學(xué)內(nèi)容,在初步認(rèn)識(shí)方向的基礎(chǔ)上,用“北偏東幾度”“南偏西幾度”的形式量化描述物體所在的具體方向,還要聯(lián)系比例尺的知識(shí),用“距離多少”的形式描述物體所在的位置。

知識(shí)點(diǎn)梳理

(一)數(shù)與代數(shù)

1、百分?jǐn)?shù)的應(yīng)用

(1)求一個(gè)數(shù)比另一個(gè)數(shù)多(少)百分之幾的實(shí)際問(wèn)題

①要點(diǎn):一個(gè)數(shù)比另一個(gè)數(shù)多(少)百分之幾 = 一個(gè)數(shù)比另一個(gè)數(shù)多(少)的量÷另一個(gè)數(shù) 

②例題:六年級(jí)男生有180人,女生有160人,男生比女生多百分之幾?女生比男生少百分只幾?

男生比女生多的人數(shù) ÷ 女生人數(shù) = 百分之幾  (180 - 160)÷ 160 = 12.5%

女生比男生少的人數(shù) ÷ 男生人數(shù) = 百分之幾  (180 - 160)÷ 180 ≈ 11.1%

(2)納稅問(wèn)題

①要點(diǎn):應(yīng)該繳納的稅款叫做應(yīng)納稅額,應(yīng)納稅額與各種收入的比率叫做稅率,

應(yīng)納稅額 = 收入 × 稅率

②例題:張強(qiáng)編寫(xiě)的書(shū)在出版后得到稿費(fèi)1400元,稿費(fèi)收入扣除800元后按14%的稅率繳納個(gè)人所得稅,張強(qiáng)應(yīng)該繳納個(gè)人所得稅多少元?

(1400 - 800)×14% = 84(元)

(3)利息問(wèn)題

①要點(diǎn):存入銀行的錢(qián)叫做本金,取款時(shí)銀行除還給本金外,另外付給的錢(qián)叫做利息,利息占本金的百分率叫做利率。稅前應(yīng)得利息 = 本金 × 利率 × 時(shí)間

②例題:叔叔今年存入銀行10萬(wàn)元,定期二年,年利率4.50% ,二年后到期,扣除利息稅5% ,得到的利息能買(mǎi)一臺(tái)6000元的電腦嗎?

100000 × 4.5%  × 2 × (1 - 5%)  = 8550(元)

8550元  >  6000元   得到的利息能買(mǎi)一臺(tái)6000元的電腦

(4)有關(guān)折扣問(wèn)題

①要點(diǎn):幾折就是十分之幾,也就是百分之幾十。商品現(xiàn)價(jià) = 商品原價(jià) × 折數(shù)。

②例題:一種衣服原價(jià)每件50元,現(xiàn)在打九折出售,每件售價(jià)多少元?

九折就是90%,50×90%=50×0.9=45(元)

例題:一種衣服現(xiàn)在打九折出售,現(xiàn)在售價(jià)是45元,每件的原價(jià)是多少元?

九折”就是90%,ⅹ×90% = 45     ⅹ=50

(5)列方程解稍復(fù)雜的百分?jǐn)?shù)實(shí)際問(wèn)題

①要點(diǎn):解答稍復(fù)雜的百分?jǐn)?shù)應(yīng)用題和稍復(fù)雜的分?jǐn)?shù)應(yīng)用題的解題思路、解題方法完全相同;解答“已知比一個(gè)數(shù)多(少)百分之幾的數(shù)是多少,求這個(gè)數(shù)”的實(shí)際問(wèn)題,可以根據(jù)數(shù)量間的相等關(guān)系列方程求解;或者根據(jù)除法的意義,直接解答。

②例題:果園里的梨樹(shù)和蘋(píng)果樹(shù)共有360棵,其中的蘋(píng)果樹(shù)的棵樹(shù)是梨樹(shù)的棵樹(shù)的20%。蘋(píng)果樹(shù)和梨樹(shù)各有多少棵?

解:設(shè)梨樹(shù)有x棵,蘋(píng)果樹(shù)有20%x棵

  x + 20%x = 360      x = 300

20%x = 300 × 20% = 60

答:梨樹(shù)有300棵,蘋(píng)果樹(shù)有60棵。

例題:某工廠六月份用煤60噸,六月份比五月份少用煤25%,五月份用煤多少噸?

解:設(shè)五月份用煤x噸

  x - 25%x = 60      x = 80

答:五月份用煤80噸。

2、比例的有關(guān)知識(shí)

(1)比例的意義

①要點(diǎn):表示兩個(gè)比相等的式子叫做比例。

②例題:應(yīng)用比例的意義判斷6.4 : 4和9.6 : 6能否組成比例?

因?yàn)椋?.4 : 4 = 6.4 ÷ 4 = 1.6   9.6 : 6 = 9.6 ÷ 6 = 1.6

所以:6.4 : 4 = 9.6 : 6

(2)比例的基本性質(zhì)

①要點(diǎn):組成比例的四個(gè)數(shù),叫做比例的項(xiàng)。兩端的兩項(xiàng)叫做比例的外項(xiàng),中間的兩項(xiàng)叫做比例的內(nèi)項(xiàng);在比例里,兩個(gè)外項(xiàng)的積等于兩個(gè)內(nèi)項(xiàng)的積。這叫做比例的基本性質(zhì)。

②例題:    3 :8  =  18  :48        3 × 48 = 8 × 18

內(nèi)項(xiàng) 

                           外項(xiàng)

例題:運(yùn)用比例的基本性質(zhì)判斷3.6 :1.8和0.5 :0.25能否組成比例?

因?yàn)?nbsp; 3.6 × 0.25 = 0.9      1.8 × 0.5 = 0.9

所以  3.6 :1.8 = 0.5 :0.25

例題:從12的因數(shù)中任意選出4個(gè)數(shù),再組成8個(gè)比例式。

     因?yàn)椋?2 = 1 × 12 = 2 × 6 = 3 × 4 

所以從12的因數(shù)中任意選出兩組4個(gè)數(shù)并運(yùn)用比例的基本性質(zhì)可以組成8個(gè)不同的比例。       2 × 6 = 3 × 4

(2)︰(3)= (4)︰(6)    (3)︰(2)= (6)︰(4)

(2)︰(3)= (4)︰(6)    (3)︰(2)= (6)︰(4)

(6)︰(4)= (3)︰(2)    (4)︰(6)= (2)︰(3)

(6)︰(4)= (3)︰(2)    (4)︰(6)= (2)︰(3)

(3)解比例

①要點(diǎn):根據(jù)比例的基本性質(zhì),如果已知比例中的任意三項(xiàng),就可以求出這個(gè)比例中的另一個(gè)未知項(xiàng)。求比例的未知項(xiàng),叫做解比例。

②例題:3 : 8 = ⅹ : 40                  =  

 8ⅹ = 3 × 40             4.5ⅹ = 9 × 0.8

8ⅹ = 120                 4.5ⅹ = 7.2

ⅹ = 15                     ⅹ = 1.6

(4)比例尺

①要點(diǎn):圖上距離和實(shí)際距離的比,叫做這幅圖的比例尺。

比例尺 =  ,比例尺有兩種形式:數(shù)值比例尺和線段比例尺。

②例題:在一幅某鄉(xiāng)農(nóng)作物布局圖上,20厘米表示實(shí)際距離16千米。求這幅圖的比例尺。

16千米 = 1600000厘米    

  =       

例題:說(shuō)出下面比例尺表示的意思。

 

這是線段比例尺,它表示圖上1厘米的距離代表實(shí)際距離200千米。

例題:在一幅比例尺是1:500000的地圖上,量得甲、乙兩城的距離是12.5厘米。甲、乙兩城實(shí)際相距多少千米?  

方法1、12.5×500000 = 6250000(厘米)= 62.5(千米)

方法2、2.5×5 = 62.5(千米)

方法3、12.5 ÷   = 12.5×500000 = 6250000(厘米)= 62.5千米

解:設(shè)甲、乙兩城實(shí)際相距ⅹ厘米。

  =  

1ⅹ = 12.5 × 500000

ⅹ = 6250000

6250000(厘米)= 62.5千米

(5)面積變化

①要點(diǎn):把一個(gè)平面圖形按照一定的倍數(shù)(n)放大或縮小到原來(lái)的幾分之一( )后,放大(或縮。┖笈c放大(或縮。┣皥D形的面積比是n:1(或1:n)。

②例題:下面的大長(zhǎng)方形是由一個(gè)小長(zhǎng)方形按比例放大后得到的圖形。分別量出它們的長(zhǎng)和寬,算算大長(zhǎng)方形與小長(zhǎng)方形面積的比是幾比幾。

                                         

 

量得小長(zhǎng)方形的長(zhǎng)是2.5厘米,寬是1厘米;大長(zhǎng)方形的長(zhǎng)是7.5厘米,寬是3厘米。大長(zhǎng)方形與小長(zhǎng)方形長(zhǎng)的比是7.5 : 2.5 = 3 : 1,寬的比是3 : 1。

  =   =   ×   = 9 : 1 = 3 : 1

大長(zhǎng)方形與小長(zhǎng)方形面積的比是9 : 1。

3、成正比例和成反比例的量

(1)正比例的意義和圖像

①要點(diǎn):兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化。如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們之間的關(guān)系叫做正比例關(guān)系。

如果用字母x和y分別表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,正比例關(guān)系可以用這樣的式子來(lái)表示:  = K(一定)用“描點(diǎn)法”可以得到正比例的圖像,正比例的圖像是一條直線。對(duì)照?qǐng)D像,能根據(jù)一種量的值,估計(jì)另一種量相對(duì)應(yīng)的值。

②例題:仔細(xì)觀察下表,思考表格中兩種量之間有關(guān)系嗎?有什么關(guān)系?為什么?

表格1

數(shù)量/本 1 3 6 8 10 20 ……

總價(jià)/元 4 12 24 32 40 80 ……

  = 4,  = 4,  = 4  ……

因?yàn)?nbsp; = 單價(jià)(一定),所以單價(jià)一定時(shí),總價(jià)和數(shù)量成正比例。

例題:在圓柱的側(cè)面積、底面周長(zhǎng)、高這三種量中

            當(dāng)(    )一定時(shí),(    )與(    )成正比例;

            當(dāng)(   )一定時(shí),(    )與(    )成正比例。

例題:某造紙廠每小時(shí)造紙1.5噸,2小時(shí)、3小時(shí)┈┈各造紙多少噸?

造紙時(shí)間/時(shí) 1 2 3 4 ……

造紙噸數(shù)/噸 1.5 ……

根據(jù)表中的數(shù)據(jù),在下圖中描出造紙時(shí)間和造紙噸數(shù)對(duì)應(yīng)的點(diǎn),再把它們連起來(lái)。             噸數(shù)/噸

6             

3      

1    

0

1  2  3  4 5  6  7 時(shí)間/時(shí)

造紙噸數(shù)與造紙時(shí)間成正比例嗎?為什么?

因?yàn)?nbsp; = 每小時(shí)造紙噸數(shù)(一定),所以每小時(shí)造紙噸數(shù)一定時(shí),造紙噸數(shù)與造紙時(shí)間成正比例。

根據(jù)圖像判斷,5小時(shí)造紙多少噸?

根據(jù)圖像判斷,5小時(shí)造紙7.5噸

(2)反比例的意義

①要點(diǎn):兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化。如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的乘積一定,這兩種量就叫做成反比例的量,它們之間的關(guān)系叫做反比例關(guān)系。

如果用字母x和y分別表示兩種相關(guān)聯(lián)的量,用k表示它們的積,反比例關(guān)系可以用這樣的式子來(lái)表示:xy = K(一定)。

②例題:仔細(xì)觀察下表,思考表格中兩種量之間有關(guān)系嗎?有什么關(guān)系?為什么?用60元錢(qián)購(gòu)買(mǎi)筆記本,筆記本的單價(jià)和可以購(gòu)買(mǎi)的數(shù)量如下表:

單價(jià)/元 1.5 2 3 4 5 6 ……

數(shù)量/本 40 30 20 15 12 10 ……

1.5 × 40 = 60 ,2 × 30 = 60 ,4 × 15 = 60  ……

因?yàn)閱蝺r(jià) × 數(shù)量 = 總價(jià)(一定),所以總價(jià)一定時(shí),單價(jià)和數(shù)量成反比例。

例題:在圓柱的側(cè)面積、底面周長(zhǎng)、高這三種量中當(dāng)(  )一定時(shí),(  )與(  )成反比例。

(二)空間與圖形

1、圓柱和圓錐

(1)圓柱和圓錐的特征

圓柱 圓錐

底面 兩個(gè)底面完全相同,都是圓形。 一個(gè)底面,是圓形。

側(cè)面 曲面,沿高剪開(kāi),展開(kāi)后是長(zhǎng)方形。 曲面,沿頂點(diǎn)到底面圓周上的一條線段剪開(kāi),展開(kāi)后是扇形。

高 兩個(gè)底面之間的距離,有無(wú)數(shù)條。 頂點(diǎn)到底面圓心的距離,只有一條。

(2)圓柱的表面積和體積

①要點(diǎn):圓柱的側(cè)面積 = 底面周長(zhǎng) × 高

圓柱的表面積 = 側(cè)面積 + 底面積 × 2

圓柱所占空間的大小是圓柱的體積,圓柱的體積(容積) = 底面積 × 高,用含有字母的式子表示是:V = sh 或者V = лrh 。

②例題:用鐵皮制作一個(gè)圓柱形煙囪,要求底面直徑是3分米,高是15分米,制作這個(gè)煙囪至少需要鐵皮多少平方分米?(接頭處不計(jì),得數(shù)保留整平方分米)

側(cè)面積:3.14 × 3 × 15  = 141.3(平方分米)≈ 142(平方分米)

例題:一個(gè)圓柱形蓄水池,底面周長(zhǎng)是25.12米,高是4米,將這個(gè)蓄水池四周及底部    抹上水泥。如果每平方米要用水泥20千克,一共要用多少千克水泥?

底面積:25.12 ÷ 3.14 ÷ 2 = 4(米)

3.14 × 4  = 50.24(平方米)

側(cè)面積:25.12 × 4 = 100.48(平方米)

表面積:50.24  + 100.48 = 150.72(平方米)

水泥質(zhì)量:  150.72 × 20 = 3014.4千克

例題:在直徑0.8米的水管中,水流速度是每秒2米,那么1分鐘流過(guò)的水有多少立方米?

3.14 ×(0.8÷2) × 2 × 60 = 60.288(立方米)

(3)圓錐的體積

①要點(diǎn):圓錐所占空間的大小是圓錐的體積,圓錐的體積是與它等底等高的圓柱體積的三分之一。即V =  sh 或者V =  лrh 。

②例題:一個(gè)圓錐體的體積是a立方米,和它等底等高的圓柱體體積是(    )

例題:把一段圓鋼切削成一個(gè)最大的圓錐體,圓柱體體積是6立方米,圓錐體體積是(    )立方米

例題:一個(gè)圓錐形沙堆,高是1.5米,底面半徑是2米,每立方米沙重1.8噸。這堆沙約重多少噸?

 ×3.14 ×2 ×1.5×1.8 = 11.304(噸)

2、圖形的放大或縮小

①要點(diǎn):把一個(gè)圖形按一定比放大或縮小,就是把它的每條邊按一定的比放大或縮小。

②例題:一張長(zhǎng)方形圖片,長(zhǎng)12厘米,寬9厘米。按1 : 3的比縮小后,新圖片的長(zhǎng)是(     )厘米,寬是(  )厘米,這張圖片(    )不變,大。    )。

一張長(zhǎng)方形圖片,長(zhǎng)12厘米,寬9厘米。按1 : 3的比縮小后,新圖片的長(zhǎng)是(   4  )厘米,寬是( 3 )厘米,這張圖片(  形狀  )不變,大。  變了  )。

例題:一塊正方形的花手帕,邊長(zhǎng)10厘米,將其按(   )的比放大后,邊長(zhǎng)變?yōu)?0厘米。

一塊正方形的花手帕,邊長(zhǎng)10厘米,將其按(3 : 1  )的比放大后,邊長(zhǎng)變?yōu)?0厘米。

例題:按2 : 1的比畫(huà)出平行四邊形放大后的圖形,按1 : 3的比畫(huà)出長(zhǎng)方形縮小后的圖形。

3、確定位置等內(nèi)容

①要點(diǎn):知道了物體的方向和距離,就能確定物體的位置。

根據(jù)物體的位置,結(jié)合比例尺的相關(guān)知識(shí),可以在平面圖上畫(huà)出物體的位置。畫(huà)的時(shí)候先按方向畫(huà)一條射線,在根據(jù)圖上距離找出點(diǎn)所在的位置。

描述行走路線要依次逐段地說(shuō),每一段都應(yīng)說(shuō)出行走的方向與路程。

②例題:下圖是按1︰50000的比例尺繪出的方位圖。說(shuō)一說(shuō)商店、公園、電影院的位置。

                                            電影院

●30

●       ●

40             廣場(chǎng)  公園

●  商店

公園在廣場(chǎng)的東面(  0.75  )千米處。

量得公園到廣場(chǎng)的圖上距離是1.5厘米,1.5×50000 = 75000厘米 = 0.75千米

電影院在廣場(chǎng)的( 北 )偏( 東 )( 60 )方向( 0.75 )千米處。

商店在廣場(chǎng)的( 南偏西 50方向1.5千米處 )。量得商店到廣場(chǎng)的圖上距離是3厘米

例題:下圖是某市旅游1號(hào)車行駛的線路圖,請(qǐng)根據(jù)線路圖填空。

  

旅游1號(hào)車從起點(diǎn)站出發(fā),向(    )行駛到達(dá)青水公園,再向(    )偏(    )(    )的方向行(    )千米到達(dá)抗戰(zhàn)紀(jì)念碑。

由綠博園向南偏(    )(    )的方向行(    )千米到達(dá)購(gòu)物中心,再向北偏(    )(    )的方向行(    )千米到達(dá)人民公園。

旅游1號(hào)車從起點(diǎn)站出發(fā),向( 東 )行駛到達(dá)青水公園,

再向( 北 )偏(東)(40)的方向行(1.8 )千米到達(dá)抗戰(zhàn)紀(jì)念碑。

由綠博園向南偏(東)(60)的方向行(1.7)千米到達(dá)購(gòu)物中心,再向北偏( 東 )(70)的方向行(1.5)千米到達(dá)人民公園。

小學(xué)數(shù)學(xué)總復(fù)習(xí)專題講解及訓(xùn)練(九)

模擬試題

一、填空。

1、(    )÷15=0.8=(    )%=(     )成

2、籃球個(gè)數(shù)是足球的125%,籃球比足球多(  )%。 

3、一個(gè)圓錐的體積是76立方厘米,底面積是19平方厘米。這個(gè)圓錐的高是( )厘米。

4、如果3a=4b,那么a : b = (       ):(     )  。

5、 一個(gè)直角三角形中,兩個(gè)銳角度數(shù)的比是3 : 2 ,這兩個(gè)銳角分別是( )度、( )度。

6、 12的約數(shù)中可以選出4個(gè)數(shù)組成一個(gè)比例,請(qǐng)你寫(xiě)出比值不同的兩組:(              )、(               )。  

7、 一個(gè)比例里,兩個(gè)外項(xiàng)正好互為倒數(shù),其中一個(gè)內(nèi)項(xiàng)是2.5,另一個(gè)內(nèi)項(xiàng)是(     )。

8、一個(gè)圓柱的底面半徑為2厘米,側(cè)面展開(kāi)后正好是一個(gè)正方形,圓柱的體積是(     )立方厘米。

9、一個(gè)長(zhǎng)為6厘米,寬為4厘米的長(zhǎng)方形,以長(zhǎng)為軸旋轉(zhuǎn)一周,將會(huì)得到一個(gè)底面直徑是(    )厘米,高為(   )厘米的(    )體,它的體積是(   )立方厘米。

10、                       如左圖所示,把一個(gè)高為10厘米的圓柱切成若干等分,拼成一個(gè)近似的長(zhǎng)方體。如果這個(gè)長(zhǎng)方體的底面積是50平方厘米,那么圓柱體積是(       )立方厘米

二、選擇。

1、圓的面積和它的半徑        .  A、成正比例  B、成反比例  C、不成比例 

2、下列說(shuō)法正確的有           。

A、表示兩個(gè)比相等的式子叫做比例。  B、互質(zhì)的兩個(gè)數(shù)沒(méi)有公約數(shù)。

C、分子一定,分?jǐn)?shù)值和分母成反比例。D、圓錐的體積等于圓柱體積的 。

3、圓柱的底面半徑擴(kuò)大2倍,高不變。它的底面積擴(kuò)大      倍,側(cè)面積擴(kuò)

大    倍,體積擴(kuò)大    倍。A  2 、  B 4  、 C  8 、   D  16 

4.六(2)班人數(shù)的40%是女生,六(3)班人數(shù)的45%是女生,兩班女生人數(shù)相等。那么六(2)班的人數(shù)_____六(3)班人數(shù)。 A. 小于  B. 等于  C .大于  D.都不是

5.把一團(tuán)圓柱體橡皮泥揉成一個(gè)與它等底的圓錐體,高將 _______

A.擴(kuò)大3倍     B.縮小3倍     C.擴(kuò)大6倍     D.縮小6倍

三、計(jì)算。

1、用遞等式計(jì)算。(12分)

0.16+4÷( - )  1.7+3.98+5  4.8×3.9+6.1×4 

2、解方程。(6分)

2X+3×0.9=24.7         0.3 :x=17 :51        =0.5

四、畫(huà)一畫(huà)。(5分)

學(xué)校的操場(chǎng)長(zhǎng)150米,寬60米,請(qǐng)你根據(jù)比例尺在下面的空白處畫(huà)出操場(chǎng)的平面圖。(并請(qǐng)你標(biāo)明比例尺及長(zhǎng)寬的厘米數(shù))  (1:3000)

五、解決實(shí)際問(wèn)題(25分)

1、下面是張大爺?shù)囊粡埓鎲,如果到期要?%的利息稅,他的存款到期時(shí)實(shí)際可得多少元利息?

2、一個(gè)圓柱形的無(wú)蓋水桶,底面半徑4分米,高6分米,至少需要用多少平方分米的鐵皮?(用進(jìn)一法取近似值,得數(shù)保留整數(shù));如果用來(lái)裝水,可以裝多少千克水?(每升水重1千克)

3、一條公路已經(jīng)修了它的  ,再修300米,就修好這條公路的一半。這條公路長(zhǎng)多少米?

4.有一個(gè)近似的圓錐形砂堆重3.6噸,測(cè)得高是1.2米,如果每噸砂的體積是0.6立方米。這堆砂的底面積是多少平方米?

5、用塑料繩捆扎一個(gè)圓柱形的蛋糕盒(如下圖),打結(jié)處正好是底面圓心,打

結(jié)用去繩長(zhǎng)25厘米。

(1)、扎這個(gè)盒子至少用去塑料繩多少厘米?

(2)、在它的整個(gè)側(cè)面貼上商標(biāo)和說(shuō)明,這部分的面積至少多少平方厘米?

   

參考答案:

一、填空。

1、(  12  )÷15=0.8=(  80  )%=(   八  )成

2、籃球個(gè)數(shù)是足球的125%,籃球比足球多( 25 )%。 

3、一個(gè)圓錐的體積是76立方厘米,底面積是19平方厘米。這個(gè)圓錐的高是(12)厘米。

4、如果3a=4b,那么a : b = (   4    ):(   3  )  。

5、一個(gè)直角三角形中,兩個(gè)銳角度數(shù)的比是3 : 2 ,這兩個(gè)銳角分別是(54)度、(36)度。

6、12的約數(shù)中可以選出4個(gè)數(shù)組成一個(gè)比例,請(qǐng)你寫(xiě)出比值不同的兩組:

(    2 :3 = 4 :6     )、(     1 :3 = 4 :12           )。  

7、一個(gè)比例里,兩個(gè)外項(xiàng)正好互為倒數(shù),其中一個(gè)內(nèi)項(xiàng)是2.5,另一個(gè)內(nèi)項(xiàng)是(  0.4   )。

8、一個(gè)圓柱的底面半徑為2厘米,側(cè)面展開(kāi)后正好是一個(gè)正方形,圓柱的體積是( 157.7536    )立方厘米。

9、一個(gè)長(zhǎng)為6厘米,寬為4厘米的長(zhǎng)方形,以長(zhǎng)為軸旋轉(zhuǎn)一周,將會(huì)得到一個(gè)底面直徑是( 8 )厘米,高為(6)厘米的( 圓柱 )體,它的體積是( 301.44 )立方厘米。

10、                       如左圖所示,把一個(gè)高為10厘米的圓柱切成若干等分,拼成一個(gè)近似的長(zhǎng)方體。如果這個(gè)長(zhǎng)方體的底面積是50平方厘米,那么圓柱體積是( 500 )立方厘米。

二、選擇。

1、圓的面積和它的半徑    C    .  A、成正比例  B、成反比例  C、不成比例 

2、下列說(shuō)法正確的有  A   C  。

A、表示兩個(gè)比相等的式子叫做比例。  B、互質(zhì)的兩個(gè)數(shù)沒(méi)有公約數(shù)。

C、分子一定,分?jǐn)?shù)值和分母成反比例。D、圓錐的體積等于圓柱體積的 。

3、圓柱的底面半徑擴(kuò)大2倍,高不變。它的底面積擴(kuò)大   B   倍,側(cè)面積擴(kuò)

大  A  倍,體積擴(kuò)大  B  倍。A  2 、  B 4  、 C  8 、   D  16 

4.六(2)班人數(shù)的40%是女生,六(3)班人數(shù)的45%是女生,兩班女生人數(shù)相等。那么六(2)班的人數(shù)___ C __六(3)班人數(shù)。 A. 小于  B. 等于  C .大于  D.都不是

5.把一團(tuán)圓柱體橡皮泥揉成一個(gè)與它等底的圓錐體,高將 ____ A ___

A.擴(kuò)大3倍     B.縮小3倍     C.擴(kuò)大6倍     D.縮小6倍

三、計(jì)算。

1、用遞等式計(jì)算。(12分)

0.16+4÷( - )= 32.16  1.7+3.98+5  = 10.98 4.8×3.9+6.1×4 =48

2、解方程。(6分)

2X+3×0.9=24.7         0.3 :x=17 :51        =0.5

X = 11               X = 0.9            X = 6.4

四、畫(huà)一畫(huà)。(5分)

學(xué)校的操場(chǎng)長(zhǎng)150米,寬60米,請(qǐng)你根據(jù)比例尺在下面的空白處畫(huà)出操場(chǎng)的平面圖。(并請(qǐng)你標(biāo)明比例尺及長(zhǎng)寬的厘米數(shù))  (1:3000)

長(zhǎng):150米 = 15000厘米   15000 ×  = 5厘米

寬:60米 = 6000厘米     6000 ×  = 2厘米

                 

2厘米

5厘米                        比例尺: 

五、解決實(shí)際問(wèn)題(25分)

1、下面是張大爺?shù)囊粡埓鎲,如果到期要?%的利息稅,他的存款到期時(shí)實(shí)際可得多少元利息?

5000 ×5.22% × 3 × (1 - 5%) = 743.85(元)

2、一個(gè)圓柱形的無(wú)蓋水桶,底面半徑4分米,高6分米,至少需要用多少平方分米的鐵皮?(用進(jìn)一法取近似值,得數(shù)保留整數(shù));如果用來(lái)裝水,可以裝多少千克水?(每升水重1千克)

3.14 ×4  +  3.14 ×4 × 2 × 6 = 200.96(平方分米)≈ 201(平方分米)

3.14 × 4 × 6 = 301.44立方分米 = 301.44升 = 301.44千克

3、一條公路已經(jīng)修了它的  ,再修300米,就修好這條公路的一半。這條公路長(zhǎng)多少米?

解:設(shè)這條公路長(zhǎng)X米    50%X -  X = 300    X  = 3000

4.有一個(gè)近似的圓錐形砂堆重3.6噸,測(cè)得高是1.2米,如果每噸砂的體積是0.6立方米。這堆砂的底面積是多少平方米?

解:設(shè)這堆砂的底面積是X平方米      × X × 1.2 = 0.6 × 3.6   X  = 5.4

5、用塑料繩捆扎一個(gè)圓柱形的蛋糕盒(如下圖),打結(jié)處正好是底面圓心,打

結(jié)用去繩長(zhǎng)25厘米。

(1)、扎這個(gè)盒子至少用去塑料繩多少厘米?

(2)、在它的整個(gè)側(cè)面貼上商標(biāo)和說(shuō)明,這部分的面積至少多少平方厘米?

   

(1)、(50 + 15)× 2 × 2 + 25 = 285厘米

(2)、3.14 × 50 × 15 = 2355平方厘米