關(guān)于高考數(shù)學(xué)第二輪復(fù)習(xí)計劃
關(guān)于高考數(shù)學(xué)第二輪復(fù)習(xí)計劃
一、二輪復(fù)習(xí)指導(dǎo)思想:
高三第一輪復(fù)習(xí)一般以知識、技能、方法的逐點掃描和梳理為主,通過第一輪復(fù)習(xí),學(xué)生大都能掌握基本概念的性質(zhì)、定理及其一般應(yīng)用,但知識較為零散,綜合應(yīng)用存在較大的問題。而第二輪復(fù)習(xí)承上啟下,是知識系統(tǒng)化、條理化,促進靈活運用的關(guān)鍵時期,是促進學(xué)生素質(zhì)、能力發(fā)展的關(guān)鍵時期,因而對講練、檢測等要求較高。
二、二輪復(fù)習(xí)形式內(nèi)容:以專題的形式,分類進行。具體而言有以下幾大專題。
。1)集合、函數(shù)與導(dǎo)數(shù)。此專題函數(shù)和導(dǎo)數(shù)、應(yīng)用導(dǎo)數(shù)知識解決函數(shù)問題是重點,特別要注重交匯問題的訓(xùn)練。每年高考中導(dǎo)數(shù)所占的比重都非常大,一般情況在客觀題中考查的導(dǎo)數(shù)的幾何意義和導(dǎo)數(shù)的計算屬于容易題;二在解答題中的考查卻有很高的綜合性,并且與思想方法緊密結(jié)合,主要考查用導(dǎo)數(shù)研究函數(shù)的性質(zhì),用函數(shù)的單調(diào)性證明不等式等。(預(yù)計5課時)
。2)三角函數(shù)、平面向量和解三角形。此專題中平面向量和三角函數(shù)的圖像與性質(zhì),恒等變換是重點。近幾年高考中三角函數(shù)內(nèi)容的難度和比重有所降低,但仍保留一個選擇題、一個填空題和一個解答題的題量,難度都不大,但是解三角形的內(nèi)容應(yīng)用性較強,將解三角形的知識與實際問題結(jié)合起來將是今后命題的一個熱點,我們可以關(guān)注。平面向量具有幾何與代數(shù)形式的“雙重性”,是一個重要的只是交匯點,它與三角函數(shù)、解析幾何都可以整合。(預(yù)計2課時)
(3)數(shù)列。此專題中數(shù)列是重點,同時也要注意數(shù)列與其他知識交匯問題的訓(xùn)練。例如,主要是數(shù)列與方程、函數(shù)、不等式的結(jié)合,概率、向量、解析幾何為點綴。數(shù)列與不等式的綜合問題是近年來的熱門問題,而數(shù)列與不等式相關(guān)的大多是數(shù)列的前n項和問題。(預(yù)計2課時)
。4)立體幾何。此專題注重幾何體的三視圖、空間點線面的關(guān)系,用空間向量解決點線面的問題是重點(理科)。(預(yù)計3課時)
(5)解析幾何。此專題中解析幾何是重點,以基本性質(zhì)、基本運算為目標(biāo)。直線與圓錐曲線的位置關(guān)系、軌跡方程的探求以及最值范圍、定點定值、對稱問題是命題的主旋律。近幾年高考中圓錐曲線問題具有兩大特色:一是融“綜合性、開放性、探索性”為一體;二是向量關(guān)系的引入、三角變換的滲透和導(dǎo)數(shù)工具的使用。我們在注重基礎(chǔ)的同時,要兼顧直線與圓錐曲線綜合問題的強化訓(xùn)練,尤其是推理、運算變形能力的訓(xùn)練。(預(yù)計3課時)
。6)不等式、推理與證明。此專題中不等式是重點,注重不等式與其他知識的整合。其中一元二次不等式的解法和恒成立問題應(yīng)用較為廣泛,在函數(shù)與導(dǎo)數(shù)、數(shù)列、解析幾何的解答題中都會有所體現(xiàn)。(預(yù)計2課時)
。7)概率與統(tǒng)計、算法初步、復(fù)數(shù)。要求學(xué)生具有較高的閱讀理解和分析問題、解決問題的能力。(預(yù)計3課時)
(8)高考數(shù)學(xué)思想方法專題。此專題中函數(shù)與方程、數(shù)形結(jié)合、化歸與轉(zhuǎn)化、分類討論思想方法是重點。(預(yù)計8課時)
三、保障措施與實施建議:
以《考試說明》、《考綱》為指導(dǎo),制定詳實科學(xué)、可操作性強的教學(xué)計劃,并在4月底完成二輪復(fù)習(xí),期間要進行六大專題訓(xùn)練、強化主干知識的復(fù)習(xí),進行一定數(shù)量的模擬檢測。
具體措施:
(一)。明確“主體”,突出重點。教師要對《考試說明》、《考綱》理解透徹,研究深入,把握到位,明確大方向。我們在繼續(xù)作好知識結(jié)構(gòu)調(diào)整的同時,抓好數(shù)學(xué)基本思想、數(shù)學(xué)基本方法的提煉和升華,努力做好從單一到綜合;從分割到整體;從記憶到應(yīng)用;從慢速模仿到快速靈活;從縱向知識到橫向方法的“五個轉(zhuǎn)化”?傮w上,形成良好知識網(wǎng)絡(luò)。同時總結(jié)解題規(guī)律,靈活應(yīng)用通性通法,模擬高考情境,提高應(yīng)試技巧。
。ǘ┌押媒虒W(xué)質(zhì)量關(guān)。從集體備課到課堂教學(xué),到作業(yè)的批改和輔導(dǎo),環(huán)環(huán)相扣,絲毫不能松懈。
集體備課的內(nèi)容:備計劃、課時的劃分、備教學(xué)的起點、重點、難點、交匯點、疑點,備習(xí)題、高考題的選用、備學(xué)情和學(xué)生的階段性心理表現(xiàn)等。集備時,一人主講、全組聽評、反復(fù)修改、二次定稿。
高考題啟示:選題以常規(guī)題型為主,嚴(yán)格控制難度,要有利于學(xué)生水平的提升。從各種材料中選出具有“針對性、典型性、新穎性”的'題目,控制題目的難度,在“穩(wěn)”、“實”上狠下功夫,充分發(fā)揮集體的力量和團隊的戰(zhàn)斗力。相互學(xué)習(xí),資源共享。全力促進集體備課與個人研究相結(jié)合,只為實現(xiàn):讓我們的課堂了無遺憾。每位老師充分考慮所教班級學(xué)生的實際狀況,優(yōu)化課堂結(jié)構(gòu),合理安排課堂容量,真正發(fā)揮學(xué)生主體地位、重視數(shù)學(xué)思想方法的滲透、突出變式練習(xí)與一題多解,培養(yǎng)學(xué)生發(fā)散思維能力,提高學(xué)生的應(yīng)變能力。
(三)、定期檢測、細心批改,有效講評。眾所周知,取得成績的關(guān)鍵是落實,每日有訓(xùn)練、每周有檢測,限時完成,及時批閱反饋。只要布置就有檢查,通過對學(xué)生學(xué)案試卷的細心批改,科學(xué)統(tǒng)計分析,找準(zhǔn)病因(知識、方法技能、書寫規(guī)范性等),認(rèn)真講評,并且對個別學(xué)生進行個別輔導(dǎo)。
。ㄋ模┳龅剿膫轉(zhuǎn)變和做好五個“重在”。1.變介紹方法為選擇方法,突出解法的發(fā)現(xiàn)和運用。 2.變?nèi)娓采w為重點講練,突出高考“熱點”問題。 3.變以量為主為以質(zhì)取勝,突出講練落實。4、變以“補弱”為主為“揚長補弱”并舉,突出因材施教。五個“重在”是指:1、重在解題思想的分析,即在復(fù)習(xí)中要及時將幾種常見的數(shù)學(xué)思想滲透到解題中去;2、重在知識要點的梳理,即第二輪復(fù)習(xí)不像第一輪復(fù)習(xí),沒有必要將每一個知識點都講到,但是要將重要的知識點用較多的時間重點講評,及時梳理;3、重在解題方法的總結(jié),即在講評試題中關(guān)聯(lián)的解題方法要給學(xué)生歸類、總結(jié),以達觸類旁通的效果;4、重在學(xué)科特點的提煉,數(shù)學(xué)以概念性強,充滿思辨性,量化突出,解法多樣,應(yīng)用廣泛為特點,在復(fù)習(xí)中要展現(xiàn)提煉這些特點;5、重在規(guī)范解法的示范,有些學(xué)生在平時的解題那怕是考試中很少注意書寫規(guī)范,而高考是分步給分,書寫不規(guī)范,邏輯不連貫會讓學(xué)生把本應(yīng)該得的分丟了,因此教師在復(fù)習(xí)中有必要作一些示范性的解答。
(五)、注重應(yīng)試技巧的訓(xùn)練。雖然我們不能做考試的奴隸,但適當(dāng)?shù)目荚囉?xùn)練是必不可少的,在平時的復(fù)習(xí)考試中應(yīng)做好如下幾點:
。1)。容易題爭取不丟分——規(guī)范表述少跳步
加強接替表述的規(guī)范性,準(zhǔn)確運用數(shù)學(xué)語言,盡量做到容易提不丟分,解題中出現(xiàn)不恰當(dāng)?shù)摹疤健,使很多人容易失分?/p>
。2)。中等題爭取少丟分——得分點處寫清楚
容易題和中檔題是試卷的主要構(gòu)成部分,是考生得分的主要來源,是進一步解高考題的基礎(chǔ),要確;A(chǔ)分、拿下力爭分、不丟零碎分。
。3)。較難題爭取多拿分——知道一點寫一點
一道高考題做不出來,不等于一點想法都沒有,不等于所涉及的知識一片空白,尚未成功不等于徹底失敗,應(yīng)盡量將自己知道的寫出來。例如,涉及到直線與圓錐曲線的位置關(guān)系問題,一般只要聯(lián)立直線與圓錐曲線方程,消去一個未知數(shù)(如y),然后寫出這個一元二次方程(假如二次項系數(shù)不為零,否則要討論),寫出判別式和根與系數(shù)的關(guān)系,哪怕后面一點都不會解,也已拿到本題三分之一的分?jǐn)?shù)。
。4)克服“會而不對,對而不全”的問題
不怕難題不得分,就怕每題都扣分,例如在代數(shù)論證中“以圖代證”。盡管解題思路正確甚至很巧妙,但是由于不善于把“以圖代證”準(zhǔn)確地轉(zhuǎn)譯為“文字語言”,得分少得可憐,只有重視解題過程的語言表述,“會做”題才能“得分”。
(5)正確處理難題與容易題的關(guān)系
近年來考題的順序并不完全是按先易后難的順序,在答題時要按安排時間,不要在某個卡住的難題上打“持久戰(zhàn)”,那樣既耗費時間又拿不到分,會做的題又被耽誤了,造成“隱性失分”。解答題一般都設(shè)置了層次分明的“臺階”,入口難,入手易,但是深入難,解到底難,因此看似容易的題也會有“陷阱”,看似難做的題也有可得分之處,所以盡量做到中等題少丟分,難題多得分。
。┛茖W(xué)研究教育策略,做好學(xué)生的心理導(dǎo)航工作。隨著高考日日臨近,學(xué)生的緊張、焦躁心理逐漸加重,使休息效率和學(xué)習(xí)效率下降。我們針對學(xué)生的個性差異,以及具體情況要時刻注意學(xué)生心理方面的
引導(dǎo)調(diào)節(jié),為我們的學(xué)生保駕護航。
總之,第二輪復(fù)習(xí)過程中,要充分體現(xiàn)分類指導(dǎo)、分類要求的原則,內(nèi)容的選取一定要有明確的目的性和針對性,要充分發(fā)揮教師的創(chuàng)造性,更要充分考慮學(xué)生的實際,要密切注意學(xué)生的信息反饋,防止過分拔高,加重負擔(dān)。二輪復(fù)習(xí)是對我們教師的教學(xué)水平,研究水平的大檢閱。
【高考數(shù)學(xué)第二輪復(fù)習(xí)計劃】相關(guān)文章:
高考數(shù)學(xué)第二輪復(fù)習(xí)計劃范例04-28
高考數(shù)學(xué)第二輪復(fù)習(xí)計劃參閱04-30
高考數(shù)學(xué)第二輪復(fù)習(xí)計劃指導(dǎo)04-28
高考數(shù)學(xué)第二輪復(fù)習(xí)計劃安排04-19
高考數(shù)學(xué)第二輪復(fù)習(xí)計劃范例參考04-18
2017高考數(shù)學(xué)第二輪復(fù)習(xí)計劃書范文11-28
高考物理復(fù)習(xí)計劃第二輪04-17