初二上冊數(shù)學(xué)知識點(diǎn)
在學(xué)習(xí)中,大家都背過各種知識點(diǎn)吧?知識點(diǎn)就是掌握某個問題/知識的學(xué)習(xí)要點(diǎn)。你知道哪些知識點(diǎn)是真正對我們有幫助的嗎?下面是小編整理的初二上冊數(shù)學(xué)知識點(diǎn),歡迎大家借鑒與參考,希望對大家有所幫助。
初二上冊數(shù)學(xué)知識點(diǎn) 1
一、在平面內(nèi),確定物體的位置一般需要兩個數(shù)據(jù)。
二、平面直角坐標(biāo)系及有關(guān)概念
1、平面直角坐標(biāo)系
在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
2、為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個象限。
3、點(diǎn)的坐標(biāo)的概念
對于平面內(nèi)任意一點(diǎn)P,過點(diǎn)P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(a,b)叫做點(diǎn)P的坐標(biāo)。
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有,分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對,當(dāng)時,(a,b)和(b,a)是兩個不同點(diǎn)的坐標(biāo)。
平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對是一一對應(yīng)的。
4、不同位置的點(diǎn)的坐標(biāo)的特征
(1)、各象限內(nèi)點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一象限:x0
點(diǎn)P(x,y)在第二象限:x0
點(diǎn)P(x,y)在第三象限:x0
點(diǎn)P(x,y)在第四象限:x0
(2)、坐標(biāo)軸上的點(diǎn)的特征
點(diǎn)P(x,y)在x軸上,y=0,x為任意實(shí)數(shù)
點(diǎn)P(x,y)在y軸上,x=0,y為任意實(shí)數(shù)
點(diǎn)P(x,y)既在x軸上,又在y軸上,x,y同時為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)
(3)、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等
點(diǎn)P(x,y)在第二、四象限夾角平分線上,x與y互為相反數(shù)
(4)、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征
位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。
位于平行于y軸的直線上的'各點(diǎn)的橫坐標(biāo)相同。
(5)、關(guān)于x軸、y軸或原點(diǎn)對稱的點(diǎn)的坐標(biāo)的特征
點(diǎn)P與點(diǎn)p關(guān)于x軸對稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的對稱點(diǎn)為P(x,-y)
點(diǎn)P與點(diǎn)p關(guān)于y軸對稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對稱點(diǎn)為P(-x,y)
點(diǎn)P與點(diǎn)p關(guān)于原點(diǎn)對稱橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對稱點(diǎn)為P(-x,-y)
(6)、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離
點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:
(1)點(diǎn)P(x,y)到x軸的距離等于|y|;
(2)點(diǎn)P(x,y)到y(tǒng)軸的距離等于|x|;
(3)點(diǎn)P(x,y)到原點(diǎn)的距離等于根號x*x+y*y
三、坐標(biāo)變化與圖形變化的規(guī)律:
坐標(biāo)(x,y)的變化
圖形的變化
x a或y a
被橫向或縱向拉長(壓縮)為原來的a倍
x a,y a
放大(縮小)為原來的a倍
x (-1)或y (-1)
關(guān)于y軸或x軸對稱
x (-1),y (-1)
關(guān)于原點(diǎn)成中心對稱
x +a或y+ a
沿x軸或y軸平移a個單位
x +a,y+ a
沿x軸平移a個單位,再沿y軸平移a個單
初二上冊數(shù)學(xué)知識點(diǎn) 2
軸對稱
1.如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2.性質(zhì)
(1)成軸對稱的兩個圖形全等;
(2)如果兩個圖形成軸對稱,那么對稱軸是對稱點(diǎn)連線的垂直平分線。
一次函數(shù)
(一)一次函數(shù)是函數(shù)中的一種,一般形如y=kx+b(k,b是常數(shù),k≠0),其中x是自變量,y是因變量。特別地,當(dāng)b=0時,y=kx+b(k為常數(shù),k≠0),y叫做x的正比例函數(shù)。
(二)函數(shù)三要素
1.定義域:設(shè)x、y是兩個變量,變量x的變化范圍為D,如果對于每一個數(shù)x∈D,變量y遵照一定的法則總有確定的數(shù)值與之對應(yīng),則稱y是x的函數(shù),記作y=f(x),x∈D,x稱為自變量,y稱為因變量,數(shù)集D稱為這個函數(shù)的定義域。
2.在函數(shù)經(jīng)典定義中,因變量改變而改變的取值范圍叫做這個函數(shù)的值域,在函數(shù)現(xiàn)代定義中是指定義域中所有元素在某個對應(yīng)法則下對應(yīng)的所有的象所組成的集合。如:f(x)=x,那么f(x)的取值范圍就是函數(shù)f(x)的值域。
3.對應(yīng)法則:一般地說,在函數(shù)記號y=f(x)中,“f”即表示對應(yīng)法則,等式y(tǒng)=f(x)表明,對于定義域中的任意的x值,在對應(yīng)法則“f”的作用下,即可得到值域中唯一y值。
(三)一次函數(shù)的表示方法
1.解析式法:用含自變量x的式子表示函數(shù)的方法叫做解析式法。
2.列表法:把一系列x的值對應(yīng)的函數(shù)值y列成一個表來表示的.函數(shù)關(guān)系的方法叫做列表法。
3.圖像法:用圖象來表示函數(shù)關(guān)系的方法叫做圖象法。
(四)一次函數(shù)的性質(zhì)
1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等于0,且k,b為常數(shù))。
2.當(dāng)x=0時,b為函數(shù)在y軸上的交點(diǎn),坐標(biāo)為(0,b)。當(dāng)y=0時,該函數(shù)圖象在x軸上的交點(diǎn)坐標(biāo)為(-b/k,0)。
3.k為一次函數(shù)y=kx+b的斜率,k=tanθ(角θ為一次函數(shù)圖象與x軸正方向夾角,θ≠90°)。
4.當(dāng)b=0時(即y=kx),一次函數(shù)圖象變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。
5.函數(shù)圖象性質(zhì):當(dāng)k相同,且b不相等,圖像平行;當(dāng)k不同,且b相等,圖象相交于Y軸;當(dāng)k互為負(fù)倒數(shù)時,兩直線垂直。
6.平移時:上加下減在末尾,左加右減在中間。
直角三角形
1.勾股定理及其逆定理
定理:直角三角形的兩條直角邊的等于的平方。
逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形。
2.含30°的直角三角形的邊的性質(zhì)
定理:在直角三角形中,如果一個銳角等于30°,那么等于的一半。
3.直角三角形斜邊上的中線等于斜邊的一半。
要點(diǎn)詮釋:①勾股定理的逆定理在語言敘述的時候一定要注意,不能說成“兩條邊的平方和等于斜邊的平方”,應(yīng)該說成“三角形兩邊的平方和等于第三邊的平方”。
、谥苯侨切蔚娜扰卸ǚ椒ǎ琀L還有SSS,SAS,ASA,AAS,一共有5種判定方法。
圖形的平移與旋轉(zhuǎn)
1.平移,是指在同一平面內(nèi),將一個圖形上的所有點(diǎn)都按照某個直線方向做相同距離的移動,這樣的圖形運(yùn)動叫做圖形的平移運(yùn)動,簡稱平移。
2.平移性質(zhì)
(1)圖形平移前后的形狀和大小沒有變化,只是位置發(fā)生變化。
(2)圖形平移后,對應(yīng)點(diǎn)連成的線段平行(或在同一直線上)且相等。
拓展閱讀:初中數(shù)學(xué)提高解題速度的方法
認(rèn)真仔細(xì)審題
對于一道具體的習(xí)題,解題時最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。
有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。所以,在實(shí)際解題時,應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。
做好歸納總結(jié)
在解過一定數(shù)量的習(xí)題之后,對所涉及到的知識、解題方法進(jìn)行歸納總結(jié),以便使解題思路更為清晰,就能達(dá)到舉一反三的效果,對于類似的習(xí)題一目了然,可以節(jié)約大量的解題時間。
熟悉習(xí)題內(nèi)容
解題、做練習(xí)只是學(xué)習(xí)過程中的一個環(huán)節(jié),而不是學(xué)習(xí)的全部,你不能為解題而解題。解題時,我們的概念越清晰,對公式、定理和規(guī)則越熟悉,解題速度就越快。
因此,我們在解題之前,應(yīng)通過閱讀教科書和做簡單的練習(xí),先熟悉、記憶和辨別這些基本內(nèi)容,正確理解其涵義的本質(zhì),接著馬上就做后面所配的練習(xí),一刻也不要停留。
學(xué)會主動畫圖
畫圖是一個翻譯的過程,把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關(guān)系就變得一目了然。尤其是對于幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。
因此,牢記各種題型的基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過程和條件,對于提高解題速度非常重要。
逐步增加難度
人們認(rèn)識事物的過程都是從簡單到復(fù)雜。簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。
我們在學(xué)習(xí)時,應(yīng)根據(jù)自己的能力,先去解那些看似簡單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達(dá)到事半功倍的效果。
初二上冊數(shù)學(xué)知識點(diǎn) 3
在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形.
(1)多邊形的一些要素:
邊:組成多邊形的各條線段叫做多邊形的.邊.
頂點(diǎn):每相鄰兩條邊的公共端點(diǎn)叫做多邊形的頂點(diǎn).
內(nèi)角:多邊形相鄰兩邊組成的角叫多邊形的內(nèi)角,一個n邊形有n個內(nèi)角。
外角:多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
(2)在定義中應(yīng)注意:
、僖恍┚段(多邊形的邊數(shù)是大于等于3的正整數(shù));
、谑孜岔槾蜗噙B,二者缺一不可;
③理解時要特別注意“在同一平面內(nèi)”這個條件,其目的是為了排除幾個點(diǎn)不共面的情況,即空間
初二上冊數(shù)學(xué)知識點(diǎn) 4
1、全等三角形的對應(yīng)邊、對應(yīng)角相等
2、邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
3、角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
4、推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
5、邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等
6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
7、定理1在角的平分線上的點(diǎn)到這個角的兩邊的距離相等
8、定理2到一個角的兩邊的距離相同的點(diǎn),在這個角的'平分線上
9、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
10、等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)
21、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
22、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
23、推論3等邊三角形的各角都相等,并且每一個角都等于60°
24、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
25、推論1三個角都相等的三角形是等邊三角形
26、推論2有一個角等于60°的等腰三角形是等邊三角形
27、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
28、直角三角形斜邊上的中線等于斜邊上的一半
29、定理線段垂直平分線上的點(diǎn)和這條線段兩個端點(diǎn)的距離相等
30、逆定理和一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
初二上冊數(shù)學(xué)知識點(diǎn) 5
第一章勾股定理
1、探索勾股定理
①勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2
2、一定是直角三角形嗎
、偃绻切蔚娜呴La b c滿足a2+b2=c2,那么這個三角形一定是直角三角形
3、勾股定理的應(yīng)用
第二章實(shí)數(shù)
1、認(rèn)識無理數(shù)
、儆欣頂(shù):總是可以用有限小數(shù)和無限循環(huán)小數(shù)表示
、跓o理數(shù):無限不循環(huán)小數(shù)
2、平方根
、偎銛(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x就叫做a的算數(shù)平方根
②特別地,我們規(guī)定:0的算數(shù)平方根是0
、燮椒礁阂话愕,如果一個數(shù)x的平方等于a,即x2=a。那么這個數(shù)x就叫做a的平方根,也叫做二次方根
④一個正數(shù)有兩個平方根;0只有一個平方根,它是0本身;負(fù)數(shù)沒有平方根
、菡龜(shù)有兩個平方根,一個是a的算數(shù)平方,另一個是—,它們互為相反數(shù),這兩個平方根合起來可記作±
、揲_平方:求一個數(shù)a的平方根的運(yùn)算叫做開平方,a叫做被開方數(shù)
3、立方根
①立方根:一般地,如果一個數(shù)x的立方等于a,即x3=a,那么這個數(shù)x就叫做a的立方根,也叫三次方根
、诿總數(shù)都有一個立方根,正數(shù)的立方根是正數(shù);0立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
③開立方:求一個數(shù)a的立方根的運(yùn)算叫做開立方,a叫做被開方數(shù)
4、估算
、俟浪,一般結(jié)果是相對復(fù)雜的小數(shù),估算有精確位數(shù)
5、用計(jì)算機(jī)開平方
6、實(shí)數(shù)
①實(shí)數(shù):有理數(shù)和無理數(shù)的統(tǒng)稱
、趯(shí)數(shù)也可以分為正實(shí)數(shù)、0、負(fù)實(shí)數(shù)
③每一個實(shí)數(shù)都可以在數(shù)軸上表示,數(shù)軸上每一個點(diǎn)都對應(yīng)一個實(shí)數(shù),在數(shù)軸上,右邊的點(diǎn)永遠(yuǎn)比左邊的點(diǎn)表示的數(shù)大
7、二次根式
①含義:一般地,形如(a≥0)的式子叫做二次根式,a叫做被開方數(shù)
、 =(a≥0,b≥0),=(a≥0,b>0)
、圩詈喍胃剑阂话愕,被開方數(shù)不含分母,也不含能開的盡方的因數(shù)或因式,這樣的二次根式,叫做最簡二次根式
、芑啎r,通常要求最終結(jié)果中分母不含有根號,而且各個二次根式時最簡二次根式
第三章位置與坐標(biāo)
1、確定位置
、僭谄矫鎯(nèi),確定一個物體的位置一般需要兩個數(shù)據(jù)
2、平面直角坐標(biāo)系
、俸x:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系
、谕ǔ5,兩條數(shù)軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或者橫軸,豎直的數(shù)軸叫y軸和縱軸,二者統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o被稱為直角坐標(biāo)系的原點(diǎn)
、劢⒘似矫嬷苯亲鴺(biāo)系,平面內(nèi)的點(diǎn)就可以用一組有序?qū)崝?shù)對來表示
、茉谄矫嬷苯亲鴺(biāo)系中,兩條坐標(biāo)軸將坐標(biāo)平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標(biāo)軸上的點(diǎn)不在任何一個象限
、菰谥苯亲鴺(biāo)系中,對于平面上任意一點(diǎn),都有唯一的一個有序?qū)崝?shù)對(即點(diǎn)的坐標(biāo))與它對應(yīng);反過來,對于任意一個有序?qū)崝?shù)對,都有平面上唯一的一點(diǎn)與它對應(yīng)
3、軸對稱與坐標(biāo)變化
、訇P(guān)于x軸對稱的兩個點(diǎn)的坐標(biāo),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對稱的兩個點(diǎn)的坐標(biāo),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)
第四章一次函數(shù)
1、函數(shù)
、僖话愕,如果在一個變化過程中有兩個變量x和y,并且對于變量x的每一個值,變量y都有唯一的值與它對應(yīng),那么我們稱y是x的函數(shù)其中x是自變量
、诒硎竞瘮(shù)的方法一般有:列表法、關(guān)系式法和圖象法
、蹖τ谧宰兞吭诳扇≈捣秶鷥(nèi)的一個確定的值a,函數(shù)有唯一確定的對應(yīng)值,這個對應(yīng)值稱為當(dāng)自變量等于a的函數(shù)值
2、一次函數(shù)與正比例函數(shù)
、偃魞蓚變量x,y間的對應(yīng)關(guān)系可以表示成y=kx+b(k、b為常數(shù),k≠0)的'形式,則稱y是x的一次函數(shù),特別的,當(dāng)b=0時,稱y是x的正比例函數(shù)
3、一次函數(shù)的圖像
、僬壤瘮(shù)y=kx的圖像是一條經(jīng)過原點(diǎn)(0,0)的直線。因此,畫正比例函數(shù)圖像是,只要再確定一點(diǎn),過這個點(diǎn)與原點(diǎn)畫直線就可以了
、谠谡壤瘮(shù)y=kx中,當(dāng)k>0時,y的值隨著x值的增大而減;當(dāng)k<0時,y的值隨著x的值增大而減小
、垡淮魏瘮(shù)y=kx+b的圖像是一條直線,因此畫一次函數(shù)圖像時,只要確定兩個點(diǎn),再過這兩點(diǎn)畫直線就可以了。一次函數(shù)y=kx+b的圖像也稱為直線y=kx+b
、芤淮魏瘮(shù)y=kx+b的圖像經(jīng)過點(diǎn)(0,b)。當(dāng)k>0時,y的值隨著x值的增大而增大;當(dāng)k<0時,y的值隨著x值的增大而減小
4、一次函數(shù)的應(yīng)用
①一般地,當(dāng)一次函數(shù)y=kx+b的函數(shù)值為0時,相應(yīng)的自變量的值就是方程kx+b=0的解,從圖像上看,一次函數(shù)y=kx+b的圖像與x軸交點(diǎn)的橫坐標(biāo)就是方程kx+b=0
第五章二元一次方程組
1、認(rèn)識二元一次方程組
、俸袃蓚未知數(shù),并且所含有未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程
、诠埠袃蓚未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組
、鄱淮畏匠探M中各個方程的公共解,叫做這個二元一次方程組的解
2、求解二元一次方程組
、賹⑵渲幸粋方程中的某個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,并代入另個方程中,從而消去一個未知數(shù),化二元一次方程組為一元一次方程,這種解方程組的方法稱為代入消元法,簡稱代入法
、谕ㄟ^兩式子加減,消去其中一個未知數(shù),這種解二元一次方程組的方法叫做加減消元法,簡稱加減法
3、應(yīng)用二元一次方程組
、匐u兔同籠
4、應(yīng)用二元一次方程組
、僭鰷p收支
5、應(yīng)用二元一次方程組
①里程碑上的數(shù)
6、二元一次方程組與一次函數(shù)
、僖话愕兀砸粋二元一次方程的解為坐標(biāo)的點(diǎn)組成的圖像與相應(yīng)的一次函數(shù)的圖像相同,是一條直線
②一般地,從圖形的角度看,確定兩條直線相交點(diǎn)的坐標(biāo),相當(dāng)于求相應(yīng)的二元一次方程組的解,解一個二元一次方程組相當(dāng)于確定相應(yīng)兩條直線交點(diǎn)的坐標(biāo)
7、用二元一次方程組確定一次函數(shù)表達(dá)式
①先設(shè)出函數(shù)表達(dá)式,再根據(jù)所給條件確定表達(dá)式中未知的系數(shù),從而得到函數(shù)表達(dá)式的方法,叫做待定系數(shù)法。
8、三元一次方程組
、僭谝粋方程組中,各個式子都含有三個未知數(shù),并且所含有未知數(shù)的項(xiàng)的次數(shù)都是1,這樣的方程叫做三元一次方程
、谙襁@樣,共含有三個未知數(shù)的三個一次方程所組成的一組方程,叫做三元一次方程組
③三元一次方程組中各個方程的公共解,叫做這個三元一次方程組的解。
第六章數(shù)據(jù)的分析
1、平均數(shù)
①一般地,對于n個數(shù),我們把(x1+x2+···+xn)叫做這n個數(shù)的算數(shù)平均數(shù),簡稱平均數(shù)記為。
、谠趯(shí)際問題中,一組數(shù)據(jù)里的各個數(shù)據(jù)的“重要程度”未必相同,因而在計(jì)算,這組數(shù)據(jù)的平均數(shù)時,往往給每個數(shù)據(jù)一個權(quán),叫做加權(quán)平均數(shù)
2、中位數(shù)與眾數(shù)
、僦形粩(shù):一般地,n個數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)
、谝唤M數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)
、燮骄鶖(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢的統(tǒng)計(jì)量
④計(jì)算平均數(shù)時,所有數(shù)據(jù)都參加運(yùn)算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實(shí)生活中較為常用,但他容易受極端值影響。
、葜形粩(shù)的優(yōu)點(diǎn)是計(jì)算簡單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息
、薷鱾數(shù)據(jù)重復(fù)次數(shù)大致相等時,眾數(shù)往往沒有特別意義
3、從統(tǒng)計(jì)圖分析數(shù)據(jù)的集中趨勢
4、數(shù)據(jù)的離散程度
、賹(shí)際生活中,除了關(guān)心數(shù)據(jù)的集中趨勢外,人們還關(guān)注數(shù)據(jù)的離散程度,即它們相對于集中趨勢的偏離情況。一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,(稱為極差),就是刻畫數(shù)據(jù)離散程度的一個統(tǒng)計(jì)量
②數(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標(biāo)準(zhǔn)差刻畫
、鄯讲钍歉鱾數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)
、芷渲惺瞧骄鶖(shù),s2是方差,而標(biāo)準(zhǔn)差就是方差的算術(shù)平方根
、菀话愣,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。
第七章平行線的證明
1、為什么要證明
①實(shí)驗(yàn)、觀察、歸納得到的結(jié)論可能正確,也可能不正確,因此,要判斷一個數(shù)學(xué)結(jié)論是否正確,僅僅依靠實(shí)驗(yàn)、觀察、歸納是不夠的,必須進(jìn)行有根有據(jù)的證明
2、定義與命題
、僮C明時,為了交流方便,必須對某些名稱和術(shù)語形成共同的認(rèn)識,為此,就要對名稱和術(shù)語的含義加以描述,做出明確的規(guī)定,也就是給它們的定義
②判斷一件事情的句子,叫做命題
③一般地,每個命題都由條件和結(jié)論兩部分組成。條件是已知的選項(xiàng),結(jié)論是已知選項(xiàng)推出的事項(xiàng)。命題通?梢詫懗伞叭绻....那么....”的形式,其中“如果”引出的部分是條件,“那么”引出的部分是結(jié)論
、苷_的命題稱為真命題,不正確的命題稱為假命題
⑤要說明一個命題是假命題,常常可以舉出一個例子,使它具備命題的條件,而不具有命題的結(jié)論,這種例子稱為反例
⑥歐幾里得在編寫《原本》時,挑選了一部分?jǐn)?shù)學(xué)名詞和一部分公認(rèn)的真命題作為證實(shí)其他命題的出發(fā)點(diǎn)和依據(jù)。其中數(shù)學(xué)名詞稱為原名,公認(rèn)的真命題稱為公理,除了公理外,其他命題的真假都需要通過演繹推理的方法進(jìn)行判斷
⑦演繹推理的過程稱為證明,經(jīng)過證明的真命題稱為定理,每個定理都只能用公理、定義和已經(jīng)證明為真的命題來證明
a.本套教科書選用九條基本事實(shí)作為證明的出發(fā)點(diǎn)和依據(jù),其中八條是:兩點(diǎn)確定一條直線
b.兩點(diǎn)之間線段最短
c.同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直
d.兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行(簡述為:同位角相等,兩直線平行)
e.過直線外一點(diǎn)有且只有一條直線與這條直線平行
f.兩邊及其夾角分別相等的兩個三角形全等
g.兩角及其夾邊分別相等的兩個三角形全等
h.三邊分別相等的兩個三角形全等
、啻送,數(shù)與式的運(yùn)算律和運(yùn)算法則、等式的有關(guān)性質(zhì),以及反映大小關(guān)系的有關(guān)性質(zhì)都可以作為證明的依據(jù)
⑨定理:同角(等角)的補(bǔ)角相等
同角(等角)的余角相等
三角形的任意兩邊之和大于第三邊
對頂角相等
3、平行線的判定
、俣ɡ恚簝蓷l直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行,簡述為:內(nèi)錯角相等,兩直線平行
、诙ɡ恚簝蓷l直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行,簡述為:同旁內(nèi)角互補(bǔ),兩直線平行。
4、平行線的性質(zhì)
、俣ɡ恚簝蓷l平行直線被第三條直線所截,同位角相等。簡述為:兩直線平行,同位角相等
、诙ɡ恚簝蓷l平行直線被第三條直線所截,內(nèi)錯角相等。簡述為:兩直線平行,內(nèi)錯角相等
、鄱ɡ恚簝蓷l平行直線被第三條直線所截,同旁內(nèi)角互補(bǔ)。簡述為:兩直線平行,同旁內(nèi)角互補(bǔ)
、芏ɡ恚浩叫杏谕粭l直線的兩條直線平行
5、三角形內(nèi)角和定理
①三角形內(nèi)角和定理:三角形的內(nèi)角和等于180°
、诙ɡ恚喝切蔚囊粋外角等于和它不相鄰的兩個內(nèi)角的和
定理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
、畚覀兺ㄟ^三角形的內(nèi)角和定理直接推導(dǎo)出兩個新定理。像這樣,由一個基本事實(shí)或定理直接推出的定理,叫做這個基本事實(shí)或定理的推論,推論可以當(dāng)定理使用。
初二上冊數(shù)學(xué)知識點(diǎn) 6
一次函數(shù)
(1)正比例函數(shù):一般地,形如y=kx(k是常數(shù),k?0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù);
(2)正比例函數(shù)圖像特征:一些過原點(diǎn)的直線;
(3)圖像性質(zhì):
、佼(dāng)k>0時,函數(shù)y=kx的圖像經(jīng)過第一、三象限,從左向右上升,即隨著x的增大y也增大;②當(dāng)k<0時,函數(shù)y=kx的圖像經(jīng)過第二、四象限,從左向右下降,即隨著x的增大y反而減。
(4)求正比例函數(shù)的解析式:已知一個非原點(diǎn)即可;
(5)畫正比例函數(shù)圖像:經(jīng)過原點(diǎn)和點(diǎn)(1,k);(或另外一個非原點(diǎn))
(6)一次函數(shù):一般地,形如y=kx+b(k、b是常數(shù),k?0)的函數(shù),叫做一次函數(shù);
(7)正比例函數(shù)是一種特殊的一次函數(shù);(因?yàn)楫?dāng)b=0時,y=kx+b即為y=kx)
(8)一次函數(shù)圖像特征:一些直線;
(9)性質(zhì):
、賧=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個單位長度而得;(當(dāng)b>0,向上平移;當(dāng)b<0,向下平移)
、诋(dāng)k>0時,直線y=kx+b由左至右上升,即y隨著x的`增大而增大;
、郛(dāng)k<0時,直線y=kx+b由左至右下降,即y隨著x的增大而減;
、墚(dāng)b>0時,直線y=kx+b與y軸正半軸有交點(diǎn)為(0,b);
、莓(dāng)b<0時,直線y=kx+b與y軸負(fù)半軸有交點(diǎn)為(0,b);
(10)求一次函數(shù)的解析式:即要求k與b的值;
(11)畫一次函數(shù)的圖像:已知兩點(diǎn);
用函數(shù)觀點(diǎn)看方程(組)與不等式
(1)解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個一次函數(shù)的值為0時,求相應(yīng)的自變量的值;從圖像上看,這相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo)的值;
(2)解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(小)于0時,求自變量相應(yīng)的取值范圍;
(3)每個二元一次方程都對應(yīng)一個一元一次函數(shù),于是也對應(yīng)一條直線;
(4)一般地,每個二元一次方程組都對應(yīng)兩個一次函數(shù),于是也對應(yīng)兩條直線。從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時兩個函數(shù)的值相等,以及這個函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo);
初二上冊數(shù)學(xué)知識點(diǎn) 7
一、實(shí)數(shù)的概念及分類
1、實(shí)數(shù)的分類
一是分類是:正數(shù)、負(fù)數(shù)、0;
另一種分類是:有理數(shù)、無理數(shù)
將兩種分類進(jìn)行組合:負(fù)有理數(shù),負(fù)無理數(shù),0,正有理數(shù),正無理數(shù)
2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。
在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:
(1)開方開不盡的數(shù),如等;
(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;
(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;
(4)某些三角函數(shù)值,如sin60o等
二、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對值
1、相反數(shù)
實(shí)數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點(diǎn)關(guān)于原點(diǎn)對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。
2、絕對值
在數(shù)軸上,一個數(shù)所對應(yīng)的.點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。
3、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。
4、數(shù)軸
規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。
解題時要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對應(yīng)的,并能靈活運(yùn)用。
初二上冊數(shù)學(xué)知識點(diǎn) 8
。ㄒ唬┻\(yùn)用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項(xiàng)式分解因式。于是有:
a2—b2=(a+b)(a—b)
a2+2ab+b2=(a+b)2
a2—2ab+b2=(a—b)2
如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。
(二)平方差公式
1.平方差公式
。1)式子:a2—b2=(a+b)(a—b)
。2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。
。ㄈ┮蚴椒纸
1.因式分解時,各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。
2.因式分解,必須進(jìn)行到每一個多項(xiàng)式因式不能再分解為止。
。ㄋ模┩耆椒焦
(1)把乘法公式(a+b)2=a2+2ab+b2和(a—b)2=a2—2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2
a2—2ab+b2 =(a—b)2
這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。
把a(bǔ)2+2ab+b2和a2—2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
。2)完全平方式的形式和特點(diǎn)
①項(xiàng)數(shù):三項(xiàng)
、谟袃身(xiàng)是兩個數(shù)的的平方和,這兩項(xiàng)的符號相同。
③有一項(xiàng)是這兩個數(shù)的積的兩倍。
。3)當(dāng)多項(xiàng)式中有公因式時,應(yīng)該先提出公因式,再用公式分解。
。4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項(xiàng)式因式都不能再分解為止。
。ㄎ澹┓纸M分解法
我們看多項(xiàng)式am+ an+ bm+ bn,這四項(xiàng)中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式。
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x。但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)x(a +b)。
這種利用分組來分解因式的方法叫做分組分解法。從上面的例子可以看出,如果把一個多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個因式正好相同,那么這個多項(xiàng)式就可以用分組分解法來分解因式。
。┨峁蚴椒
1.在運(yùn)用提取公因式法把一個多項(xiàng)式因式分解時,首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式。當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個多項(xiàng)式時,可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個多項(xiàng)式因式看作一個整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃,或改變符號,直到可確定多項(xiàng)式的公因式。
2.運(yùn)用公式x2 +(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:
1.必須先將常數(shù)項(xiàng)分解成兩個因數(shù)的積,且這兩個因數(shù)的代數(shù)和等于一次項(xiàng)的系數(shù)。
2.將常數(shù)項(xiàng)分解成滿足要求的兩個因數(shù)積的多次嘗試,一般步驟:
、倭谐龀(shù)項(xiàng)分解成兩個因數(shù)的積各種可能情況;
②嘗試其中的哪兩個因數(shù)的和恰好等于一次項(xiàng)系數(shù)。
3.將原多項(xiàng)式分解成(x+q)(x+p)的形式。
。ㄆ撸┓质降某顺
1.把一個分式的分子與分母的公因式約去,叫做分式的.約分。
2.分式進(jìn)行約分的目的是要把這個分式化為最簡分式。
3.如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式。如果分子或分母中的多項(xiàng)式不能分解因式,此時就不能把分子、分母中的某些項(xiàng)單獨(dú)約分。
4.分式約分中注意正確運(yùn)用乘方的符號法則,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按—1的偶次方為正、奇次方為負(fù)來處理。當(dāng)然,簡單的分式之分子分母可直接乘方。
6.注意混合運(yùn)算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減。
。ò耍┓?jǐn)?shù)的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形。約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來。
2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。
3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。
4.通分的依據(jù):分式的基本性質(zhì)。
5.通分的關(guān)鍵:確定幾個分式的公分母。
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。
6.類比分?jǐn)?shù)的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減。
9.同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個分子是個整體,要適時添上括號。
10.對于整式和分式之間的加減運(yùn)算,則把整式看成一個整體,即看成是分母為1的分式,以便通分。
11.異分母分式的加減運(yùn)算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運(yùn)算簡化。
12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡分式。
(九)含有字母系數(shù)的一元一次方程
含有字母系數(shù)的一元一次方程
引例:一數(shù)的a倍(a≠0)等于b,求這個數(shù)。用x表示這個數(shù),根據(jù)題意,可得方程ax=b(a≠0)
在這個方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對x來說,字母a是x的系數(shù),b是常數(shù)項(xiàng)。這個方程就是一個含有字母系數(shù)的一元一次方程。
含有字母系數(shù)的方程的解法與以前學(xué)過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等于零
初二上冊數(shù)學(xué)知識點(diǎn) 9
一.知識概念
1.同底數(shù)冪的乘法法則:m,n都是正數(shù)
2..冪的乘方法則:m,n都是正數(shù)
3.整式的乘法
。1)單項(xiàng)式乘法法則:單項(xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個因式。
。2)單項(xiàng)式與多項(xiàng)式相乘:單項(xiàng)式乘以多項(xiàng)式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
。3)多項(xiàng)式與多項(xiàng)式相乘
多項(xiàng)式與多項(xiàng)式相乘,先用一個多項(xiàng)式中的每一項(xiàng)乘以另一個多項(xiàng)式的每一項(xiàng),再把所得的積相加。
4.平方差公式:
5.完全平方公式:
6.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即a≠0,m、n都是正數(shù),且m>n.
在應(yīng)用時需要注意以下幾點(diǎn):
、俜▌t使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0.
②任何不等于0的數(shù)的0次冪等于1,即,如,-2.50=1,則00無意義.
、廴魏尾坏扔0的數(shù)的-p次冪p是正整數(shù),等于這個數(shù)的p的次冪的`倒數(shù),即a≠0,p是正整數(shù),而0-1,0-3都是無意義的;當(dāng)a>0時,a-p的值一定是正的;當(dāng)a<0時,a-p的值可能是正也可能是負(fù)的,如,
、苓\(yùn)算要注意運(yùn)算順序。
7.整式的除法
單項(xiàng)式除法單項(xiàng)式:單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式;
多項(xiàng)式除以單項(xiàng)式:多項(xiàng)式除以單項(xiàng)式,先把這個多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加.
8.分解因式:把一個多項(xiàng)式化成幾個整式的積的形式,這種變形叫做把這個多項(xiàng)式分解因式.
分解因式的一般方法:
1.提公共因式法
2.運(yùn)用公式法
3.十字相乘法
分解因式的步驟:
1、先看各項(xiàng)有沒有公因式,若有,則先提取公因式;
2、再看能否使用公式法;
3、用分組分解法,即通過分組后提取各組公因式或運(yùn)用公式法來達(dá)到分解的目的;
4、因式分解的最后結(jié)果必須是幾個整式的乘積,否則不是因式分解;
5、因式分解的結(jié)果必須進(jìn)行到每個因式在有理數(shù)范圍內(nèi)不能再分解為止
整式的乘除與分解因式這章內(nèi)容知識點(diǎn)較多,表面看來零碎的概念和性質(zhì)也較多,但實(shí)際上是密不可分的整體。在學(xué)習(xí)本章內(nèi)容時,應(yīng)多準(zhǔn)備些小組合作與交流活動,培養(yǎng)學(xué)生推理能力、計(jì)算能力。在做題中體驗(yàn)數(shù)學(xué)法則、公式的簡潔美、和諧美,提高做題效率。
初二上冊數(shù)學(xué)知識點(diǎn) 10
1.直線:幾何學(xué)基本概念,是點(diǎn)在空間內(nèi)沿相同或相反方向運(yùn)動的軌跡。從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個二元一次方程所表示的圖形。求兩條直線的交點(diǎn),只需把這兩個二元一次方程聯(lián)立求解,當(dāng)這個聯(lián)立方程組無解時,二直線平行;有無窮多解時,二直線重合;只有一解時,二直線相交于一點(diǎn)。常用直線與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度。
2.射線:在歐幾里德幾何學(xué)中,直線上的一點(diǎn)和它一旁的部分所組成的圖形稱為射線或半直線。
3.線段:指一個或一個以上不同線素組成一段連續(xù)的或不連續(xù)的圖線,如實(shí)線的線段或由長劃、短間隔、點(diǎn)、短間隔、點(diǎn)、短間隔組成的雙點(diǎn)長劃線的`線段。
線段有如下性質(zhì):兩點(diǎn)之間線段最短。
4. 兩點(diǎn)間的距離:連接兩點(diǎn)間線段的長度叫做這兩點(diǎn)間的距離。
5. 端點(diǎn):直線上兩個點(diǎn)和它們之間的部分叫做線段,這兩個點(diǎn)叫做線段的端點(diǎn)。
線段用表示它兩個端點(diǎn)的字母或一個小寫字母表示,有時這些字母也表示線段長度,記作線段AB或線段BA,線段a。其中AB表示直線上的任意兩點(diǎn)。
6.直線、射線、線段區(qū)別:直線沒有距離。射線也沒有距離。因?yàn)橹本沒有端點(diǎn),射線只有一個端點(diǎn),可以無限延長。
初二上冊數(shù)學(xué)知識點(diǎn) 11
一、 在平面內(nèi),確定物體的位置一般需要兩個數(shù)據(jù)。
二、平面直角坐標(biāo)系及有關(guān)概念
1、平面直角坐標(biāo)系
在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
2、為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個象限。
3、點(diǎn)的坐標(biāo)的概念
對于平面內(nèi)任意一點(diǎn)P,過點(diǎn)P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(a,b)叫做點(diǎn)P的坐標(biāo)。
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有,分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對,當(dāng) 時,(a,b)和(b,a)是兩個不同點(diǎn)的坐標(biāo)。
平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對是一一對應(yīng)的。
4、不同位置的點(diǎn)的坐標(biāo)的特征
(1)、各象限內(nèi)點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一象限:x0
點(diǎn)P(x,y)在第二象限:x0
點(diǎn)P(x,y)在第三象限:x0
點(diǎn)P(x,y)在第四象限:x0
(2)、坐標(biāo)軸上的點(diǎn)的特征
點(diǎn)P(x,y)在x軸上,y=0 ,x為任意實(shí)數(shù)
點(diǎn)P(x,y)在y軸上,x=0 ,y為任意實(shí)數(shù)
點(diǎn)P(x,y)既在x軸上,又在y軸上, x,y同時為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)
(3)、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等
點(diǎn)P(x,y)在第二、四象限夾角平分線上,x與y互為相反數(shù)
(4)、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征
位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。
位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。
(5)、關(guān)于x軸、y軸或原點(diǎn)對稱的點(diǎn)的坐標(biāo)的特征
點(diǎn)P與點(diǎn)p關(guān)于x軸對稱 橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的.對稱點(diǎn)為P(x,-y)
點(diǎn)P與點(diǎn)p關(guān)于y軸對稱 縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對稱點(diǎn)為P(-x,y)
點(diǎn)P與點(diǎn)p關(guān)于原點(diǎn)對稱 橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對稱點(diǎn)為P(-x,-y)
(6)、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離
點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:
(1)點(diǎn)P(x,y)到x軸的距離等于|y|;
(2)點(diǎn)P(x,y)到y(tǒng)軸的距離等于|x|;
(3)點(diǎn)P(x,y)到原點(diǎn)的距離等于根號x*x+y*y
三、坐標(biāo)變化與圖形變化的規(guī)律:
坐標(biāo)(x,y)的變化
圖形的變化
x a或y a
被橫向或縱向拉長(壓縮)為原來的a倍
x a,y a
放大(縮小)為原來的a倍
x (-1)或y (-1)
關(guān)于y軸或x軸對稱
x (-1),y (-1)
關(guān)于原點(diǎn)成中心對稱
x +a或y+ a
沿x軸或y軸平移a個單位
x +a,y+ a
沿x軸平移a個單位,再沿y軸平移a個單
初二上冊數(shù)學(xué)知識點(diǎn) 12
1.分式方程:
分母里含有未知數(shù)的方程叫做分式方程;注意:以前學(xué)過的,分母里不含未知數(shù)的方程是整式方程。
2.分式方程的增根:
在解分式方程時,為了去分母,方程的兩邊同乘以了含有未知數(shù)的代數(shù)式,所以可能產(chǎn)生增根,故分式方程必須驗(yàn)增根;注意:在解方程時,方程的兩邊一般不要同時除以含未知數(shù)的代數(shù)式,因?yàn)榭赡軄G根。
3.分式方程驗(yàn)增根的方法:
把分式方程求出的根代入最簡公分母(或分式方程的每個分母),若值為零,求出的根是增根,這時原方程無解;若值不為零,求出的根是原方程的解。
由此可判斷,使分母的值為零的`未知數(shù)的值可能是原方程的增根。
4.分式方程的應(yīng)用
列分式方程解應(yīng)用題與列整式方程解應(yīng)用題的方法一樣,但需要增加“驗(yàn)增根”的程序。
【初二上冊數(shù)學(xué)知識點(diǎn)】相關(guān)文章:
初二數(shù)學(xué)上冊知識點(diǎn)總結(jié)01-05
初二上冊數(shù)學(xué)知識點(diǎn)總結(jié)11-11
初二數(shù)學(xué)上冊知識點(diǎn)總結(jié) 8篇01-05
初二數(shù)學(xué)上冊知識點(diǎn)總結(jié) (8篇)01-05
初二數(shù)學(xué)上冊知識點(diǎn)總結(jié) (集錦8篇)01-05
初二上冊數(shù)學(xué)知識點(diǎn)人教版總結(jié)08-02
初二物理上冊知識點(diǎn)07-11
初二上冊數(shù)學(xué)知識點(diǎn)總結(jié)(精選9篇)11-16