初一數學知識點總結(合集15篇)
總結是指對某一階段的工作、學習或思想中的經驗或情況加以總結和概括的書面材料,它可以幫助我們有尋找學習和工作中的規(guī)律,不如靜下心來好好寫寫總結吧。你所見過的總結應該是什么樣的?下面是小編為大家收集的初一數學知識點總結,歡迎閱讀,希望大家能夠喜歡。
初一數學知識點總結1
知識點、概念總結
1.不等式:用符號"<",">","≤","≥"表示大小關系的式子叫做不等式。
2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。
一般地,用純粹的大于號、小于號">","<"連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)"≥","≤"連接的不等式稱為非嚴格不等式,或稱廣義不等式。
3.不等式的解:使不等式成立的未知數的值,叫做不等式的解。
4.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個含未知數的不等式有無數個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-1≤2的解集是x≤3
(2)用數軸表示:不等式的解集可以在數軸上直觀地表示出來,形象地說明不等式有無限多個解,用數軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)
(2)如果不等式F(x) (3)如果不等式F(x) 7.不等式的性質: (1)如果x>y,那么yy;(對稱性) (2)如果x>y,y>z;那么x>z;(傳遞性) (3)如果x>y,而z為任意實數或整式,那么x+z>y+z;(加法則) (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z (6)如果x>y,m>n,那么x+m>y+n(充分不必要條件) (7)如果x>y>0,m>n>0,那么xm>yn (8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數) 8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,并且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。 9.解一元一次不等式的一般順序: (1)去分母(運用不等式性質2、3) (2)去括號 (3)移項(運用不等式性質1) (4)合并同類項 (5)將未知數的系數化為1(運用不等式性質2、3) (6)有些時候需要在數軸上表示不等式的解集 10.一元一次不等式與一次函數的綜合運用: 一般先求出函數表達式,再化簡不等式求解。 11.一元一次不等式組:一般地,關于同一未知數的幾個一元一次不等式合在一起,就組成 了一個一元一次不等式組。 12.解一元一次不等式組的步驟: (1)求出每個不等式的解集; (2)求出每個不等式的解集的公共部分;(一般利用數軸) (3)用代數符號語言來表示公共部分。(也可以說成是下結論) 13.解不等式的訣竅 (1)大于大于取大的(大大大); 例如:X>-1,X>2,不等式組的解集是X>2 (2)小于小于取小的(小小小); 例如:X<-4,X<-6,不等式組的解集是X<-6 (3)大于小于交叉取中間; (4)無公共部分分開無解了; 14.解不等式組的口訣 (1)同大取大 例如,x>2,x>3,不等式組的解集是X>3 (2)同小取小 例如,x<2,x<3,不等式組的解集是X<2 (3)大小小大中間找 例如,x<2,x>1,不等式組的解集是1 (4)大大小小不用找 例如,x<2,x>3,不等式組無解 15.應用不等式組解決實際問題的步驟 (1)審清題意 (2)設未知數,根據所設未知數列出不等式組 (3)解不等式組 (4)由不等式組的解確立實際問題的解 (5)作答 16.用不等式組解決實際問題:其公共解不一定就為實際問題的解,所以需結合生活實際具體分析,最后確定結果。 1.同一平面內,兩直線不平行就相交。 2.兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互 為反向延長線,性質是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質是對頂角相等。 3.垂直定義:兩條直線相交所成的四個角中,如果有一個角為90度,則稱這兩條直線互相垂直。其 中一條直線叫做另外一條直線的垂線,他們的交點稱為垂足。4.垂直三要素:垂直關系,垂直記號,垂足 5.垂直公理:過一點有且只有一條直線與已知直線垂直。6.垂線段最短; 7.點到直線的距離:直線外一點到這條直線的垂線段的長度。8.兩條直線被第三條直線所截:同位角F(在兩條直線的同一旁,第三條直線的同一側),內錯角Z(在 兩條直線內部,位于第三條直線兩側),同旁內角U(在兩條直線內部,位于第三條直線同側)。9.平行公理:過直線外一點有且只有一條直線與已知直線平行。 10.如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//cP174題 11.平行線的判定。結論:在同一平面內,如果兩條直線都垂直于同一條直線,那么這兩條直線平行。平行線的性質: 1.兩直線平行,同位角相等。2.兩直線平行,內錯角相等。3.兩直線平行,同旁內角互補。 12.★命題:“如果+題設,那么+結論! 三角形和多邊形 1.三角形內角和為180° 2.構成三角形滿足的條件:三角形兩邊之和大于第三邊。 判斷方法:在△ABC中,a、b為兩短邊,c為長邊,如果a+b>c則能構成三角形,否則(a+bc)不能構成三角形(即三角形最短的兩邊之和大于最長的邊) 3.三角形邊的取值范圍:三角形的任一邊:小于兩邊之和,大于兩邊之差(的絕對值)【重點題目】三角形的兩邊分別為3和7,則三角形的第三邊的取值范圍為4.等面積法:三角形面積1底高,三角形有三條高,也就對應有三條底邊,任取其中一組底和高,21三角形同一個面積公式就有三個表示方法,任取其中兩個寫成連等(可兩邊同時2消去)底高 2底高,知道其中三條線段就可求出第四條。例如:如圖1,在直角△ABC中,ACB=900,CD 是斜邊AB 上的高,則有ACBCCDAB A CB1D【重點題目】P708題例直角三角形的三邊長分別為3、4、5,則斜邊上的高為5.等高法:高相等,底之間具有一定關系(如成比例或相等) 【例】AD是△ABC的中線,AE是△ABD的中線,SABC4cm2,則SABE=6.三角形的特性:三角形具有【重點題目】P695題7.外角: 【基礎知識】什么是外角?外角定理及其推論【重點題目】P75例2P765、6、8題8.n邊形的★內角和★外角和√對角線條數為 【基礎知識】正多邊形:各邊相等,各角相等;正n邊形每個內角的度數為【重點題目】P83、P84練習1,2,3;P843,4,5,6;P904、5題9.√鑲嵌:圍繞一個拼接點,各圖形組成一個周角(不重疊,無空隙)。 單一正多邊形的鑲嵌:鑲嵌圖形的每個內角能被360整除:只有6個等邊三角形(60),4個正方形(90),3個正六邊形(120)三種 (兩種正多邊形的)混合鑲嵌:混合鑲嵌公式nm3600:表示n個內角度數為的正多邊形與 0000m個內角度數為的正多邊形圍繞一個拼接點組成一個周角,即混合鑲嵌。 【例】用正三角形與正方形鋪滿地面,設在一個頂點周圍有m個正三角形、n個正方形,則m,n的值分別為多少? 平面直角坐標系 ▲基本要求:在平面直角坐標系中1.給出一點,能夠寫出該點坐標2.給出坐標,能夠找到該點 ▲建系原則:原點、正方向、橫縱軸名稱(即x、y) √語言描述:以…(哪一點)為原點,以…(哪一條直線)為x軸,以…(哪一條直線)為y軸建立直角坐標系 ▲基本概念:有順序的兩個數組成的數對稱為(有序數對)【三大規(guī)律】1.平移規(guī)律★ 點的平移規(guī)律(P51歸納) 例將P(2,3)向左平移3個單位,向上平移5個單位得到點Q,則Q點的坐標為圖形的平移規(guī)律(P52歸納) 重點題目:P53練習;P543、4題;P557題。2.對稱規(guī)律▲ 關于x軸對稱,縱坐標取相反數關于y軸對稱,橫坐標取相反數 關于原點對稱,橫、縱坐標同時取相反數 例:P點的坐標為(5,7),則P點 (1.)關于x軸對稱的點為(2.)關于y軸的對稱點為(3.)關于原點的對稱點為3.位置規(guī)律★ 假設在平面直角坐標系上有一點P(a,b)y1.如果P點在第一象限,有a>0,b>0(橫、縱坐標都大于0)第二象限第一象限2.如果P點在第二象限,有a0(橫坐標小于0,縱坐標大于0)X3.如果P點在第三象限,有a5.小長方形的面積表示頻數。縱軸為頻數。等距分組時,通常直接用小長方形的高表示頻數,即縱 組距軸為“頻數” 6.頻數分布折線圖√根據頻數分布圖畫出頻數分布折線圖:①取每個小長方形的上邊的中點,以及x 軸上與最左、最右直方相距半個組距的點。②連線【重點題目】P1693、4題 二元一次方程組和不等式、不等式組 1.解二元一次方程組,基本的思想是;2.二元一次方程(組):含兩個未知數,并且含有未知數的項的次數都是1,像這樣的方程叫做二元一次方程。把具有相同未知數的兩個二元一次方程組合起來,就組成了二元一次方程組。(具體題目見本單元測試卷填空部分) 3.★解二元一次方程組。常用的方法有和。P96、P100歸納4.★列二元一次方程組解實際問題。關鍵:找等量關系常見的類型有:分配問題P1185題;P1084、5題;P102練習3;P1048題;P1034題;追及問題P1037題、P1186題;順流逆流P102練習2;P1082題;藥物配制P1087題;行程問題P99練習4;P1083,6題順流逆流公式:v順v靜v水v逆vv靜水5.不等式的性質(重點是性質三)P1285、7題6.利用不等式的性質解不等式,并把解集在數軸上表示出來(課本上的練例、習題)P1342 步驟:去分母,去括號,移項,合并同類項,系數化為一;其中去分母與系數化為一要特別小心,因為要在不等式兩端同時乘或除以某一個數,要考慮不等號的方向是否發(fā)生改變的問題。7.用不等式表示,P1282題,P127練習2;P123練習28.利用數軸或口訣解不等式組(課本上的例、習題) 數軸:P140歸納口訣(簡單不等式):同大取大,同小取小,大(于)小。ㄓ冢┐笕≈虚g,大(于)大。ㄓ冢┬,解不見了。 9.列不等式(組)解決實際問題:P12910;P1289題;P133例2;P1355、6、7、8、9,P139例2;P140練習2,P1413、4題不等式組的解集的確定方法(a>b):自己將表格補充完整:不等式組 4 在數軸上表示的解集解集x>a口訣大大取大;x>ax>bx<ax<bx<ax>b小大大小中間找;ba小小取;x>ax<b空集大大小小不見了。 正數和負數 、、正數和負數的概念 負數:比0小的數正數:比0大的數0既不是正數,也不是負數 注意:①字母a可以表示任意數,當a表示正數時,—a是負數;當a表示負數時,—a是正數;當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,—a就不能做出簡單判斷) 、谡龜涤袝r也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數的符號是正號。 2、具有相反意義的量 若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如: 零上8℃表示為:+8℃;零下8℃表示為:—8℃ 3、0表示的意義 。1)0表示“沒有”,如教室里有0個人,就是說教室里沒有人; 。2)0是正數和負數的分界線,0既不是正數,也不是負數。如: 。3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。 有理數 1、有理數的概念 。1)正整數、0、負整數統(tǒng)稱為整數(0和正整數統(tǒng)稱為自然數) 。2)正分數和負分數統(tǒng)稱為分數 。3)正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。 理解:只有能化成分數的數才是有理數。①π是無限不循環(huán)小數,不能寫成分數形式,不是有理數。②有限小數和無限循環(huán)小數都可化成分數,都是有理數。③整數也能化成分數,也是有理數 注意:引入負數以后,奇數和偶數的范圍也擴大了,像—2,—4,—6,—8也是偶數,—1,—3,—5也是奇數。 初一數學(上)應知應會的知識點代數初步知識 1.代數式:用運算符號“+-×÷”連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式.2.列代數式的幾個注意事項: 。1)數與字母相乘,或字母與字母相乘通常使用“”乘,或省略不寫;(2)數與數相乘,仍應使用“×”乘,不用“”乘,也不能省略乘號;(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a; 。5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a. 3.幾個重要的代數式:(m、n表示整數) (1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;(2)若a、b、c是正整數,則兩位整數是:10a+b,則三位整數是:100a+10b+c;(3)若m、n是整數,則被5除商m余n的數是:5m+n;偶數是:2n,奇數是:2n+1;三個連續(xù)整數是:n-1、n、n+1; 。4)若b>0,則正數是:a2+b,負數是:-a2-b,非負數是:a2,非正數是:-a2.有理數1.有理數: (1)凡能寫成形式的數,都是有理數.正整數、0、負整數統(tǒng)稱整數;正分數、負分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;(2)有理數的分類:①② (3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區(qū)域,這四個區(qū)域的數也有自己的特性; (4)自然數0和正整數;a>0a是正數;a<0a是負數;a≥0a是正數或0a是非負數;a≤0a是負數或0a是非正數.2.數軸:數軸是規(guī)定了原點、正方向、單位長度的一條直線.3.相反數: (1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;(3)相反數的和為0a+b=0a、b互為相反數.4.絕對值: (1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離; (2)絕對值可表示為:或;絕對值的問題經常分類討論;(3);; (4)|a|是重要的非負數,即|a|≥0;注意:|a||b|=|ab|,. 5.有理數比大。海1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0. 6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那么的倒數是;倒數是本身的數是±1;若ab=1a、b互為倒數;若ab=-1a、b互為負倒數.7.有理數加法法則: 。1)同號兩數相加,取相同的符號,并把絕對值相加; 。2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;(3)一個數與0相加,仍得這個數.8.有理數加法的運算律: 。1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).10有理數乘法法則: (1)兩數相乘,同號為正,異號為負,并把絕對值相乘;(2)任何數同零相乘都得零;(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定. 11有理數乘法的運算律: 。1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac. 12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,.13.有理數乘方的法則:(1)正數的任何次冪都是正數; 。2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定義: 。1)求相同因式積的運算,叫做乘方; 。2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;(3)a2是重要的非負數,即a2≥0;若a2+|b|=0a=0,b=0;(4)據規(guī)律底數的小數點移動一位,平方數的小數點移動二位. 15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法. 16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字. 18.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則. 19.特殊值法:是用符合題目要求的數代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明.整式的加減 1.單項式:在代數式中,若只含有乘法(包括乘方)運算;螂m含有除法運算,但除式中不含字母的一類代數式叫單項式.2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.3.多項式:幾個單項式的和叫多項式. 4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式. 5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.整式分類為:. 6.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項.7.合并同類項法則:系數相加,字母與字母的指數不變. 8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號. 9.整式的加減:整式的加減,實際上是在去括號的基礎上,把多項式的同類項合并.10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列.一元一次方程 1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!2.等式的性質: 等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.3.方程:含未知數的等式,叫方程. 4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:“方程的解就能代入”!5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.6.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程. 7.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).8.一元一次方程的最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0).9.一元一次方程解法的一般步驟:整理方程去分母去括號移項合并同類項系數化為1(檢驗方程的解).10.列一元一次方程解應用題: (1)讀題分析法:多用于“和,差,倍,分問題” 仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.(2)畫圖分析法:多用于“行程問題” 利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎. 11.列方程解應用題的常用公式: 。1)行程問題:距離=速度時間;(2)工程問題:工作量=工效工時;(3)比率問題:部分=全體比率; 。4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;(5)商品價格問題:售價=定價折,利潤=售價-成本,; 。6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h. 相反數 (1)相反數的概念:只有符號不同的兩個數叫做互為相反數. (2)相反數的意義:掌握相反數是成對出現的,不能單獨存在,從數軸上看,除0外,互為相反數的兩個數,它們分別在原點兩旁且到原點距離相等. (3)多重符號的化簡:與“+”個數無關,有奇數個“﹣”號結果為負,有偶數個“﹣”號,結果為正. (4)規(guī)律方法總結:求一個數的相反數的方法就是在這個數的前邊添加“﹣”,如a的相反數是﹣a,m+n的相反數是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括號. 2代數式求值 (1)代數式的:用數值代替代數式里的字母,計算后所得的結果叫做代數式的值. (2)代數式的求值:求代數式的值可以直接代入、計算.如果給出的代數式可以化簡,要先化簡再求值. 題型簡單總結以下三種: 、僖阎獥l件不化簡,所給代數式化簡; 、谝阎獥l件化簡,所給代數式不化簡; 、垡阎獥l件和所給代數式都要化簡. 3由三視圖判斷幾何體 (1)由三視圖想象幾何體的形狀,首先,應分別根據主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側面的形狀,然后綜合起來考慮整體形狀. (2)由物體的三視圖想象幾何體的形狀是有一定難度的,可以從以下途徑進行分析: ①根據主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側面的形狀,以及幾何體的長、寬、高; ②從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線; 、凼煊浺恍┖唵蔚膸缀误w的三視圖對復雜幾何體的想象會有幫助; 、芾糜扇晥D畫幾何體與有幾何體畫三視圖的互逆過程,反復練習,不斷總結方法 第一章:有理數 ★0既不是正數,也不是負數。0是正數和負數的分界。★整數的概念:正整數、0、負整數統(tǒng)稱為整數!锓謹档母拍睿赫摂岛拓摲謹到y(tǒng)稱為分數!镉欣頂档母拍睿赫麛岛头謹到y(tǒng)稱為有理數。 ★數軸的概念:規(guī)定了原點、正方向、單位長度的一條直線叫數軸。 。1)在直線上任意取一點表示數0,這個點叫做原點; 。2)通常規(guī)定直線上從原點向右(上)為正方向,從原點向左(或下)為負方向;(3)選取適當的長度為單位長度,直線上從原點向右,每隔一個單位長度取一個點, 依次表示1,2,3,---;從原點向左,用類似的方法依次表示-1,-2,-3。 ★相反數的概念:只有符號不同的兩個數叫做互為相反數。0的相反數是0;橄喾磾档膬蓚點關于原點對稱。 ★絕對值的概念:一般地,數軸上表示數的a的點與原點的距離叫做數a的絕對值。記作a。 由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。 ★有理數比較大小:在數軸上表示有理數,它們從左到右的順序就是從小到大的順序,即左邊的數小于右邊的數。所以由這個規(guī)定可知:(1)正數大于0,0大于負數;正數大于負數;(2)兩個負數,絕對值大的反而小。 備注:異號兩數比較大小,要考慮它們的正負;同號兩數比較大小,要考慮它們的絕對值。 ★有理數加法法則: 1、同號兩數相加,取相同的符號,并把絕對值相加。 2、絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。 3、一個數同0相加,仍是這個數。 ★有理數的加法中,兩個數相加,交換加數的位置,和不變。加法交換律:a+b=b+a.★有理數的加法中,三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。加法結合律:(a+b)+c=a+(b+c)。【結合原則:同號結合;同分母結合;互為相反數結合;湊整結合! ★有理數減法法則:減去一個數,就等于加上這個數的相反數。即:a-b=a+(-b). ★有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘;任何數同0相乘都得0。 備注:幾個不是0的數相乘,負因數的個數是偶數時,積是正數;負因數的個數是奇數時,積是負數。 ★有理數中仍然有:乘積是1的兩個數互為倒數。 ★一般地,有理數乘法中,兩個數相乘,交換因數的位置,積不變。乘法交換率:abba;三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積不變。乘法結合律:(ab)ca(bc)。 ★一般地,一個數同兩個數的和相乘,等于把這個數分別同中兩個數相乘,再把積相加。分配律:a(bc)abac ★有理數除法法則:除以一個不等于0的數,等于乘上這個數的倒數。 備注:從有理數除法法則容易得出:兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。 ★有理數的乘方:求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。a的n次方也可以讀作a的n次冪。 備注:負數的奇次冪是負數,負數的偶次冪是正數。 正數的任何次冪都是正數。0的任何正整數次冪都是0。 ★有理數的混合運算,應注意以下運算順序:先乘方,再乘除,最后加減。2。同級運算,從左到右依次計算。3。如有括號,先做括號內的運算,按小括號、中括號、大括號依次計算。 ★科學計數法:把一個大于10的數表示成ax10(其中a是整數數位只有一位的數,n是正整數) ★近似數與準確數的接近程度,可以用精確度表示。 ★有效數字:從一個數的左邊第一個非0數字起,到末位數字止,所有的數字都是這個數的有效數字。 第二章:整式的加減(為一元一次方程的學習打下基礎) ◆單項式概念:比如100t、a的平方、2.5x、vt,-n,它們都是數或者字母的積,像這樣的式子叫做單項式。單獨的一個數或一個字母也是單項式。單項式中數字因數叫做這個單項式的系數。 ◆一個單項式中,所有字母的指數的和叫做這個單項式的次數。 ◆多項式的概念:幾個單項式的和叫做多項式。其中每個單項式叫做多項式的項,不存在字母的項叫做常數項。 ◆多項式里次數最高項的次數,叫做這個多項式的次數!粽降母拍睿簡雾検脚c多項式統(tǒng)稱整式。 ◆同類項概念:所含字母相同,并且相同字母的指數也相同的項叫做同類項。幾個常數項也是同類項。 ◆把多項式中的同類項合并成一項,叫做合并同類項。 ◆合并同類項后,所得項的系數是合并前各同類項的系數之和,且字母部分不變!羧ダㄌ柗▌t: 如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同;如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反。 第三章:一元一次方程 ▲含有未知數的等式叫方程(equation)。 ▲使方程左右兩邊相等的未知數的值,叫做方程的解(solution)!缓幸粋未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程!仁降男再|:1、等式兩邊加(或減)同一個數(或式子),結果仍相等。 2、等式;兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。▲用一元一次方程分析和解決實際問題的基本過程如下: 。▽嶋H問題)設未知數,列方程數學問題(一元一次方程)解方程(數學問題的解)檢驗(實際問題的答案)。 ▲解方程的具體步驟:1、去分母(方程兩邊同乘各分母的最小公倍數);2、去括號(去括號法則);3、移項(定義);4、合并同類項(法則,同類項的定義);5、系數化為1。 ▲實際問題與一元一次方程:一元一次方程是最簡單的方程。運用方程解決問題的關鍵是分析問題中的數量關系,找出其中的相等關系,并由此列出方程。 第四章:圖形認識的初步 ※我們把從實物中抽象出的各種圖形統(tǒng)稱為幾何圖形。幾何圖形是數學研究的主要對象 之一。幾何圖形又分為立體圖形和平面圖形。 ※長方體、正方體、圓柱、圓錐、球、棱錐等都是幾何體。幾何體也簡稱體(solid)。包圍著體的是面(surface)。面有平面和曲面。 ※幾何圖形都是由點、線、面、體組成的,點是構成圖形的基本元素!涍^兩點有一條直線,并且只有一條直線。簡述:兩點確定一條直線。※直線一般用1個小寫字母表示或者用直線上的兩個大寫字母表示!渚和線段都是直線的一部分。類似于直線的表示。 ※兩點的所有連線中,線段最短。簡述:兩點之間,線段最短!B接兩點間的線段的長度,叫做中兩點的距離(distance)。 ※在國際單位制中,長度的基本單位是米(m)。常用的單位還有千米、分米、厘米、毫米、微米等。 1納米等于十億分之一米。 ※在天文學上,常用天文單位和光年計算星體間的距離。1天文單位是地球到太陽的平812 均距離,約1.5x10千米,1光年就是光1年走過的距離,約等于9.46x10千米。 ※航海上經常用到的長度單位海里(1海里=1852米);※有公共端點的兩條射線組成的圖形叫做角(angle)。這個公共點叫做角的頂點,這兩條射線是角的兩條邊。 ※我們常用量角器量角,度(degree)、分、秒是常用的角的度量單位。 ※角的度、分、秒是60進制的。以度、分、秒為單位的角的度量制,叫做角度制。※常用的量角工具有,量角器,工程常用的經緯儀。 ※從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線。 ※余角(complementaryangle):如果兩個角的和等于90度(直角),就說中這兩個角互為余角,即其中每一個角是另一個角的余角。余角的性質:等角的余角相等。 ※補角(supplementaryangle):如果兩個角的和等于180度(平角),就說這兩個角互為補角,其中一個角是另一個角的補角。補角的性質:等角的補角相等。 ※上北下南;左西右東。西北,即是北偏西45度。 第五章平行線與相交線 一.臺球桌面上的角 ※1.互為余角和互為補角的有關概念與性質 如果兩個角的和為90°(或直角),那么這兩個角互為余角;如果兩個角的和為180°(或平角),那么這兩個角互為補角; 注意:這兩個概念都是對于兩個角而言的,而且兩個概念強調的是兩個角的數量關系,與兩個角的相互位置沒有關系。 它們的主要性質:同角或等角的余角相等;同角或等角的補角相等。 二.探索直線平行的條件 ※兩條直線互相平行的條件即兩條直線互相平行的判定定理,共有三條:①同位角相等,兩直線平行;②內錯角相等,兩直線平行;③同旁內角互補,兩直線平行。 三.平行線的特征 ※平行線的特征即平行線的性質定理,共有三條:①兩直線平行,同位角相等;②兩直線平行,內錯角相等;③兩直線平行,同旁內角互補。 四.用尺規(guī)作線段和角※ 1.關于尺規(guī)作圖 尺規(guī)作圖是指只用圓規(guī)和沒有刻度的直尺來作圖。 ※2.關于尺規(guī)的功能 直尺的功能是:在兩點間連接一條線段;將線段向兩方向延長。 圓規(guī)的功能是:以任意一點為圓心,任意長度為半徑作一個圓;以任意一點為圓心,任意長度為半徑畫一段弧。 第一章:豐富的圖形世界 1、幾何圖形 從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。 2、點、線、面、體 、賻缀螆D形的組成 點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。 線:面和面相交的地方是線,分為直線和曲線。 面:包圍著體的是面,分為平面和曲面。 體:幾何體也簡稱體。 、邳c動成線,線動成面,面動成體。 3、生活中的立體圖形 生活中的立體圖形(按名稱分) 柱: 、賵A柱 ②棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、…… 錐: ①圓錐 、诶忮F 球 4、棱柱及其有關概念: 棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。 側棱:相鄰兩個側面的交線叫做側棱。 n棱柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。 5、正方體的平面展開圖: 11種(經常考:考試形式:展開的圖形能否圍成正方體;正方體對面圖案) 6、截一個正方體: 用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。 7、三視圖: 物體的三視圖指主視圖、俯視圖、左視圖。 主視圖:從正面看到的圖,叫做主視圖。 左視圖:從左面看到的.圖,叫做左視圖。 俯視圖:從上面看到的圖,叫做俯視圖。 第二章:有理數及其運算 1、有理數的分類 、僬欣頂 有理數{ ②零 、圬撚欣頂 有理數{ ①整數 、诜謹 2、相反數: 只有符號不同的兩個數叫做互為相反數,零的相反數是零 3、數軸: 規(guī)定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,三要素缺一不可)。任何一個有理數都可以用數軸上的一個點來表示。 4、倒數: 如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和—1。零沒有倒數。 5、絕對值: 在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值,(|a|≥0)。 若|a|=a,則a≥0; 若|a|=-a,則a≤0。 正數的絕對值是它本身; 負數的絕對值是它的相反數; 0的絕對值是0。 互為相反數的兩個數的絕對值相等。 6、有理數比較大。 正數大于0,負數小于0,正數大于負數; 數軸上的兩個點所表示的數,右邊的總比左邊的大; 兩個負數,絕對值大的反而小。 7、有理數的運算: 、傥宸N運算:加、減、乘、除、乘方 多個數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個數為零,積就為零。 有理數加法法則: 同號兩數相加,取相同的符號,并把絕對值相加。 異號兩數相加,絕對值值相等時和為0; 絕對值不相等時,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。 一個數同0相加,仍得這個數。 互為相反數的兩個數相加和為0。 有理數減法法則: 減去一個數,等于加上這個數的相反數! 有理數乘法法則: 兩數相乘,同號得正,異號得負,并把絕對值相乘。 任何數與0相乘,積仍為0。 有理數除法法則: 兩個有理數相除,同號得正,異號得負,并把絕對值相除。 0除以任何非0的數都得0。 注意:0不能作除數。 有理數的乘方:求n個相同因數a的積的運算叫做乘方。 正數的任何次冪都是正數,負數的偶次冪是正數,負數的奇次冪是負數。 、谟欣頂档倪\算順序 先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。 、圻\算律(5種) 加法交換律 加法結合律 乘法交換律 乘法結合律 乘法對加法的分配律 8、科學記數法 一般地,一個大于10的數可以表示成a× 10n的形式,其中1≦n<10,n是正整數,這種記數方法叫做科學記數法。(n=整數位數—1) 第三章:整式及其加減 1、代數式 用運算符號(加、減、乘、除、乘方、開方等)把數或表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。 注意: 、俅鷶凳街谐撕袛、字母和運算符號外,還可以有括號; ②代數式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式; 、鄞鷶凳街械淖帜杆硎镜臄当仨氁惯@個代數式有意義,是實際問題的要符合實際問題的意義。 代數式的書寫格式: 、俅鷶凳街谐霈F乘號,通常省略不寫,如vt; 、跀底峙c字母相乘時,數字應寫在字母前面,如4a; ③帶分數與字母相乘時,應先把帶分數化成假分數。 、軘底峙c數字相乘,一般仍用“×”號,即“×”號不省略; 、菰诖鷶凳街谐霈F除法運算時,一般寫成分數的形式;注意:分數線具有“÷”號和括號的雙重作用。 ⑥在表示和(或)差的代數式后有單位名稱的,則必須把代數式括起來,再將單位名稱寫在式子的后面。 2、整式:單項式和多項式統(tǒng)稱為整式。 ①單項式: 都是數字和字母乘積的形式的代數式叫做單項式。單項式中,所有字母的指數之和叫做這個單項式的次數;數字因數叫做這個單項式的系數。 注意: 單獨的一個數或一個字母也是單項式; 單獨一個非零數的次數是0; 當單項式的系數為1或—1時,這個“1”應省略不寫,如—ab的系數是—1,a3b的系數是1。 ②多項式: 幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數最高的項的次數叫做多項式的次數。 ③同類項: 所含字母相同,并且相同字母的指數也相同的項叫做同類項。 注意: 、偻愴椨袃蓚條件:a。所含字母相同;b。相同字母的指數也相同。 、谕愴椗c系數無關,與字母的排列順序無關; 、蹘讉常數項也是同類項。 4、合并同類項法則: 把同類項的系數相加,字母和字母的指數不變。 5、去括號法則 ①根據去括號法則去括號: 括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“—”號,把括號和它前面的“—”號去掉,括號里各項都改變符號。 、诟鶕峙渎扇ダㄌ枺 括號前面是“+”號看成+1,括號前面是“—”號看成—1,根據乘法的分配律用+1或—1去乘括號里的每一項以達到去括號的目的。 6、添括號法則 添“+”號和括號,添到括號里的各項符號都不改變;添“—”號和括號,添到括號里的各項符號都要改變。 7、整式的運算: 整式的加減法:(1)去括號;(2)合并同類項。 第四章基本平面圖形 1、線段、射線、直線 名稱 表示方法 端點 長度 直線 直線AB(或BA) 直線l 無端點 無法度量 射線 射線OM 1個 無法度量 線段 線段AB(或BA) 線段l 2個 可度量長度 2、直線的性質 、僦本公理:經過兩個點有且只有一條直線。(兩點確定一條直線。) 、谶^一點的直線有無數條。 、壑本是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。 3、線段的性質 ①線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。) 、趦牲c之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。 ③線段的大小關系和它們的長度的大小關系是一致的。 4、線段的中點: 點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。 5、角: 有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊;颍航且部梢钥闯墒且粭l射線繞著它的端點旋轉而成的。 6、角的表示 角的表示方法有以下四種: ①用數字表示單獨的角,如∠1,∠2,∠3等。 ②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。 、塾靡粋大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。 ④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。 注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。 7、角的度量 角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。 把1°的角60等分,每一份叫做1分的角,1分記作“1’”。 把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。 1°=60’,1’=60” 8、角的平分線 從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。 9、角的性質 、俳堑拇笮∨c邊的長短無關,只與構成角的兩條射線的幅度大小有關。 ②角的大小可以度量,可以比較,角可以參與運算。 10、平角和周角: 一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。 終邊繼續(xù)旋轉,當它又和始邊重合時,所形成的角叫做周角。 11、多邊形: 由若干條不在同一條直線上的線段首尾順次相連組成的'封閉平面圖形叫做多邊形。 連接不相鄰兩個頂點的線段叫做多邊形的對角線。 從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以畫(n—3)條對角線,把這個n邊形分割成(n—2)個三角形。 12、圓: 平面上,一條線段繞著一個端點旋轉一周,另一個端點形成的圖形叫做圓。 固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。 圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”; 由一條弧AB和經過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。 頂點在圓心的角叫做圓心角。 第五章一元一次方程 1、方程 含有未知數的等式叫做方程。 2、方程的解 能使方程左右兩邊相等的未知數的值叫做方程的解。 3、等式的性質 、俚仁降膬蛇呁瑫r加上(或減去)同一個代數式,所得結果仍是等式。 、诘仁降膬蛇呁瑫r乘以同一個數((或除以同一個不為0的數),所得結果仍是等式。 4、一元一次方程 只含有一個未知數,并且未知數的最高次數是1的整式方程叫做一元一次方程。 5、移項: 把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項。 6、解一元一次方程的一般步驟: 、偃シ帜 、谌ダㄌ 、垡祈棧ò逊匠讨械哪骋豁椄淖兎柡螅瑥姆匠痰囊贿呉频搅硪贿,這種變形叫移項。) 、芎喜⑼愴 、輰⑽粗獢档南禂祷癁1 第六章數據的收集與整理 1、普查與抽樣調查 為了特定目的對全部考察對象進行的全面調查,叫做普查。 其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。 從總體中抽取部分個體進行調查,這種調查稱為抽樣調查,其中從總體抽取的一部分個體叫做總體的一個樣本。 2、扇形統(tǒng)計圖 扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。(各個扇形所占的百分比之和為1) 圓心角度數=360°×該項所占的百分比。(各個部分的圓心角度數之和為360°) 3、頻數直方圖 頻數直方圖是一種特殊的條形統(tǒng)計圖,它將統(tǒng)計對象的數據進行了分組畫在橫軸上,縱軸表示各組數據的頻數。 4、各種統(tǒng)計圖的特點 條形統(tǒng)計圖:能清楚地表示出每個項目的具體數目。 折線統(tǒng)計圖:能清楚地反映事物的變化情況。 扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。 一、方程的有關概念 1.方程:含有未知數的等式就叫做方程。 2.一元一次方程:只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。 3.方程的解:使方程中等號左右兩邊相等的未知數的值,叫做方程的解。 注:⑴方程的解和解方程是不同的概念,方程的解實質上是求得的結果,它是一個數值(或幾個數值),而解方程的含義是指求出方程的解或判斷方程無解的過程。⑵方程的解的檢驗方法,首先把未知數的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結論。 二、等式的性質 。1)等式兩邊都加上(或減去)同個數(或式子),結果仍相等。用式子形式表示為:如果a=b,那么ac=bc 。2)等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc 三、移項法則:把等式一邊的某項變號后移到另一邊,叫做移項。 四、去括號法則 1.括號外的因數是正數,去括號后各項的符號與原括號內相應各項的符號相同. 2.括號外的因數是負數,去括號后各項的符號與原括號內相應各項的符號改變. 五、解方程的一般步驟 1.去分母(方程兩邊同乘各分母的最小公倍數) 2.去括號(按去括號法則和分配律) 3.移項(把含有未知數的項移到方程一邊,其他項都移到方程的另一邊,移項要變號) 4.合并(把方程化成ax=b(a0)形式) 5.系數化為1(在方程兩邊都除以未知數的系數a,得到方程的解x=ba)。 六、用方程思想解決實際問題的一般步驟 1.審:審題,分析題中已知什么,求什么,明確各數量之間的關系。 2.設:設未知數(可分直接設法,間接設法)。 3.列:根據題意列方程。 4.解:解出所列方程。 5.檢:檢驗所求的解是否符合題意。 6.答:寫出答案(有單位要注明答案)。 七、有關常用應用類型題及各量之間的關系 1、和、差、倍、分問題: 。1)倍數關系:通過關鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……”來體現。 。2)多少關系:通過關鍵詞語“多、少、和、差、不足、剩余……”來體現。 2、等積變形問題: “等積變形”是以形狀改變而體積不變?yōu)榍疤帷3S玫攘筷P系為: 、傩螤蠲娣e變了,周長沒變; 、谠象w積=成品體積。 3、勞力調配問題: 這類問題要搞清人數的變化,常見題型有: (1)既有調入又有調出。 (2)只有調入沒有調出,調入部分變化,其余不變。 。3)只有調出沒有調入,調出部分變化,其余不變。 4、數字問題 。1)要搞清楚數的表示方法:一個三位數的百位數字為a,十位數字是b,個位數字為c(其中a、b、c均為整數,且19,09,09)則這個三位數表示為:100a+10b+c 。2)數字問題中一些表示:兩個連續(xù)整數之間的關系,較大的比較小的大1;偶數用2n表示,連續(xù)的偶數用2n+2或2n2表示;奇數用2n+1或2n1表示。 5、工程問題: 工程問題中的三個量及其關系為:工作總量=工作效率工作時間 6、行程問題: 。1)行程問題中的三個基本量及其關系:路程=速度時間。 。2)基本類型有 、傧嘤鰡栴}; 、谧芳皢栴};常見的還有:相背而行;行船問題;環(huán)形跑道問題。 7、商品銷售問題 有關關系式: 商品利潤=商品售價商品進價=商品標價折扣率商品進價 商品利潤率=商品利潤/商品進價 商品售價=商品標價折扣率 8、儲蓄問題 (1)顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數,利息與本金的比叫做利率。利息的20%付利息稅 (2)利息=本金利率期數 本息和=本金+利息 利息稅=利息稅率(20%) 今天的內容就介紹這里了。 初一數學下冊期末考試知識點總結一(蘇教版) 第七章 平面圖形的認識(二) 1 第八章 冪的運算 2 第九章 整式的乘法與因式分解 3 第十章 二元一次方程組 4 第十一章 一元一次不等式 4 第十二章 證明 9 第七章 平面圖形的認識(二) 一、知識點: 1、“三線八角” 、 如何由線找角:一看線,二看型。 同位角是“F”型; 內錯角是“Z”型; 同旁內角是“U”型。 、 如何由角找線:組成角的三條線中的公共直線就是截線。 2、平行公理: 如果兩條直線都和第三條直線平行,那么這兩條直線也平行。 簡述:平行于同一條直線的兩條直線平行。 補充定理: 如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。 簡述:垂直于同一條直線的兩條直線平行。 3、平行線的判定和性質: 判定定理 性質定理 條件 結論 條件 結論 同位角相等 兩直線平行 兩直線平行 同位角相等 內錯角相等 兩直線平行 兩直線平行 內錯角相等 同旁內角互補 兩直線平行 兩直線平行 同旁內角互補 4、圖形平移的性質: 圖形經過平移,連接各組對應點所得的線段互相平行(或在同一直線上)并且相等。 5、三角形三邊之間的關系: 三角形的任意兩邊之和大于第三邊; 三角形的任意兩邊之差小于第三邊。 若三角形的三邊分別為a、b、c, 則 6、三角形中的主要線段: 三角形的高、角平分線、中線。 注意:①三角形的高、角平分線、中線都是線段。 、诟、角平分線、中線的應用。 7、三角形的內角和: 三角形的3個內角的和等于180°; 直角三角形的兩個銳角互余; 三角形的一個外角等于與它不相鄰的兩個內角的和; 三角形的一個外角大于與它不相鄰的任意一個內角。 8、多邊形的內角和: n邊形的內角和等于(n-2)180°; 任意多邊形的外角和等于360°。 第八章 冪的運算 冪(p5 1、單項式的定義: 由數或字母的積組成的式子叫做單項式。 說明:單獨的一個數或者單獨的一個字母也是單項式. 2、單項式的系數: 單項式中的數字因數叫這個單項式的系數. 說明:⑴單項式的系數可以是整數,也可能是分數或小數。如3x的系數是3的32 系數是1;4.8a的系數是4.8; 3 ⑵單項式的系數有正有負,確定一個單項式的系數,要注意包含在它前面的符號, ?4xy2的系數是4;2x2y的系數是4; 、菍τ谥缓凶帜敢驍档膯雾検剑湎禂凳1或-1,不能認為是0,如?ab的 系數是-1;ab的系數是1; 、缺硎緢A周率的π,在數學中是一個固定的常數,當它出現在單項式中時,應將其作為系數的一部分,而不能當成字母。如2πxy的系數就是2. 3、單項式的次數: 一個單項式中,所有字母的指數的和叫做這個單項式的次數. 說明:⑴計算單項式的次數時,應注意是所有字母的指數和,不要漏掉字母指數是1 的情況。如單項式2xyz的次數是字母z,y,x的指數和,即4+3+1=8, 而不是7次,應注意字母z的指數是1而不是0; ⑵單項式的指數只和字母的指數有關,與系數的指數無關。 、菃雾検绞且粋單獨字母時,它的指數是1,如單項式m的指數是1,單項式是單獨的一個常數時,一般不討論它的次數; 4、在含有字母的式子中如果出現乘號,通常將乘號寫作“* ”或者省略不寫。 5、在書寫單項式時,數字因數寫在字母因數的前面,數字因數是帶分數時轉化成假分數.。 1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。 2.三角形的分類 3.三角形的三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。 4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。 5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。 6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。 7.高線、中線、角平分線的意義和做法 8.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩(wěn)定性。 9.三角形內角和定理:三角形三個內角的和等于180° 推論1直角三角形的兩個銳角互余; 推論2三角形的一個外角等于和它不相鄰的兩個內角和; 推論3三角形的一個外角大于任何一個和它不相鄰的內角; 三角形的內角和是外角和的一半。 10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。 11.三角形外角的性質 (1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線; (2)三角形的一個外角等于與它不相鄰的兩個內角和; (3)三角形的一個外角大于與它不相鄰的任一內角; (4)三角形的外角和是360°。 12.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。 13.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。 14.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。 15.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。 16.多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。 17.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。 18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。 19.公式與性質 多邊形內角和公式:n邊形的內角和等于(n-2)·180° 20.多邊形外角和定理: (1)n邊形外角和等于n·180°-(n-2)·180°=360° (2)多邊形的每個內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等于n·180° 21.多邊形對角線的條數: (1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。 (2)n邊形共有n(n-3)/2條對角線。 一、知識梳理 知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、-0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。 知識點2:有理數的概念和分類:整數和分數統(tǒng)稱有理數。有理數的分類主要有兩種: 注:有限小數和無限循環(huán)小數都可看作分數。 知識點3:數軸的概念:像下面這樣規(guī)定了原點、正方向和單位長度的直線叫做數軸。 知識點4:絕對值的概念: (1)幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|; 。2)代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。 注:任何一個數的絕對值均大于或等于0(即非負數). 知識點5:相反數的概念: 。1)幾何意義:在數軸上分別位于原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數; (2)代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。 知識點6:有理數大小的比較: 有理數大小比較的基本法則:正數都大于零,負數都小于零,正數大于負數。 數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。 用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。 知識點7:有理數加法法則: (1)同號兩數相加,取相同的符號,并把絕對值相加; (2)異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值; (3)一個數與0相加,仍得這個數. 知識點8:有理數加法運算律: 加法交換律:兩個數相加,交換加數的位置,和不變。 加法結合律:三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。 知識點9:有理數減法法則:減去一個數,等于加上這個數的相反數。 知識點10:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統(tǒng)一成加法運算,然后省略括號和加號,并運用加法法則、加法運算律進行計算。 有理數 1.1 正數與負數 在以前學過的0以外的數前面加上負號“—”的數叫負數(negative number)。 與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上“+”)。 1.2 有理數 正整數、0、負整數統(tǒng)稱整數(integer),正分數和負分數統(tǒng)稱分數(fraction)。 整數和分數統(tǒng)稱有理數(rational number)。 通常用一條直線上的點表示數,這條直線叫數軸(number axis)。 數軸三要素:原點、正方向、單位長度。 在直線上任取一個點表示數0,這個點叫做原點(origin)。 只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0) 數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。 一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。 初中數學知識點總結:平面直角坐標系 下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。 平面直角坐標系 平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。 水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。 平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合 三個規(guī)定: 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。 相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。 初中數學知識點:平面直角坐標系的構成 平面直角坐標系的構成 在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。 通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。 初中數學知識點:點的坐標的性質 點的坐標的性質 建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。 對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。 一個點在不同的象限或坐標軸上,點的坐標不一樣。 希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。 初中數學知識點:因式分解的一般步驟 因式分解的一般步驟 如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式, 通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。 注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。 相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。 初中數學知識點:因式分解 因式分解 因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。 因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④ 因式分解與整式乘法的關系:m(a+b+c) 公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。 公因式確定方法:①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。 提取公因式步驟: 、俅_定公因式。②確定商式③公因式與商式寫成積的形式。 分解因式注意; 、俨粶蕘G字母 ②不準丟常數項注意查項數 、垭p重括號化成單括號 ④結果按數單字母單項式多項式順序排列 、菹嗤蚴綄懗蓛绲男问 ⑥首項負號放括號外 、呃ㄌ杻韧愴椇喜。 第五章《相交線與平行線》 一、知識點 5.1相交線5.1.1相交線 有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。 兩條直線相交有4對鄰補角。 有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。 5.1.2兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。 注意:⑴垂線是一條直線。 、凭哂写怪标P系的兩條直線所成的4個角都是90。 、谴怪笔窍嘟坏奶厥馇闆r。 、却怪钡挠浄ǎ篴⊥b,AB⊥CD。 畫已知直線的垂線有無數條。 過一點有且只有一條直線與已知直線垂直。 連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。 5.2平行線5.2.1平行線 在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。在同一平面內兩條直線的關系只有兩種:相交或平行。 平行公理:經過直線外一點,有且只有一條直線與這條直線平行。 如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。5.2.2直線平行的條件 兩條直線被第三條直線所截,在兩條被截線的同一方,截線的同一旁,這樣的兩個角叫做同位角。兩條直線被第三條直線所截,在兩條被截線之間,截線的兩側,這樣的兩個角叫做內錯角。 兩條直線被第三條直線所截,在兩條被截線之間,截線的同一旁,這樣的兩個角叫做同旁內角。判定兩條直線平行的方法: 方法1兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單說成:同位角相等,兩直線平行。 方法2兩條直線被第三條直線所截,如果內錯角相等,那么這兩條直線平行。簡單說成:內錯角相等,兩直線平行。 方法3兩條直線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。 5.3平行線的性質 平行線具有性質: 性質1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。性質2兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。 性質3兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。同時垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離。判斷一件事情的語句叫做命題。5.4平移 ⑴把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。 、菩聢D形中的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點,連接各組對應點的線段平行且相等。 圖形的這種移動,叫做平移變換,簡稱平移。 第六章《平面直角坐標系》 一、知識點 6.1平面直角坐標系 6.1.1有序數對 有順序的兩個數a與b組成的數對,叫做有序數對。 6.1.2平面直角坐標系 平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸稱為y軸或縱軸取2向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。 平面上的任意一點都可以用一個有序數對來表示。 建立了平面直角坐標系以后,坐標平面就被兩條坐標軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬于任何象限。 6.2坐標方法的簡單應用 6.2.1用坐標表示地理位置 利用平面直角坐標系繪制區(qū)域內一些地點分布情況平面圖的過程如下: 、沤⒆鴺讼,選擇一個適當的參照點為原點,確定x軸、y軸的正方向; ⑵根據具體問題確定適當的比例尺,在坐標軸上標出單位長度; 、窃谧鴺似矫鎯犬嫵鲞@些點,寫出各點的坐標和各個地點的名稱。6.2.2用坐標表示平移 在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x+a,y)(或(x-a,y));將點(x,y)向上(或下)平移b個單位長度,可以得到對應點(x,y+b)(或(x,y-b))。 在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向上(或向下)平移a個單位長度。 第七章《三角形》 一、知識點 7.1與三角形有關的線段 7.1.1三角形的邊 由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。相鄰兩邊組成的角,叫做三角形的內角,簡稱三角形的角。 頂點是A、B、C的三角形,記作“△ABC”,讀作“三角形ABC”。三角形兩邊的和大于第三邊。7.1.2三角形的高、中線和角平分線7.1.3三角形的穩(wěn)定性 三角形具有穩(wěn)定性。7.2與三角形有關的角7.2.1三角形的內角 三角形的內角和等于180。 7.2.2三角形的外角 三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角。三角形的一個外角等于與它不相鄰的兩個內角的和。三角形的一個外角大于與它不相鄰的任何一個內角。 7.3多邊形及其內角和7.3.1多邊形 在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。n邊形的對角線公式: n(n-3)2各個角都相等,各條邊都相等的多邊形叫做正多邊形。 7.3.2多邊形的內角和 n邊形的內角和公式:180(n-2)多邊形的外角和等于360。 7.4課題學習鑲嵌 1三角形→由不在同一直線上的三條線段首尾順次相接所組成的圖形!2判斷三條線段能否組成三角形。 ①a+b>c(ab為最短的兩條線段)②a-b a-b 進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。 兩個二元一次方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,得到一個一元一次方程。這種方法叫做加減消元法,簡稱加減法。 第九章《不等式與不等式組》 一、知識點 9.1不等式 9.1.1不等式及其解集 用“<”或“>”號表示大小關系的式子叫做不等式。使不等式成立的未知數的值叫做不等式的解。 能使不等式成立的未知數的取值范圍,叫做不等式解的集合,簡稱解集。含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式。 9.1.2不等式的性質 不等式有以下性質: 不等式的性質1不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。不等式的性質2不等式兩邊乘(或除以)同一個正數,不等號的方向不變。不等式的性質3不等式兩邊乘(或除以)同一個負數,不等號的方向改變。9.2實際問題與一元一次不等式 解一元一次方程,要根據等式的性質,將方程逐步化為x=a的形式;而解一元一次不等式,則要根據不等式的性質,將不等式逐步化為x<a(或x>a)的形式。 9.3一元一次不等式組 把兩個不等式合起來,就組成了一個一元一次不等式組。 幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。 對于具有多種不等關系的問題,可通過不等式組解決。解一元一次不等式組時。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數軸可以直觀地表示不等式組的解集。9.4課題學習利用不等關系分析比賽 1.4 有理數的乘除法 有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘。任何數同0相乘,都得0。 乘積是1的兩個數互為倒數。 有理數除法法則:除以一個不等于0的數,等于乘這個數的倒數。 兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。 mì 求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。 負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。 把一個大于10的數表示成a×10的n次方的形式,用的就是科學計數法。 從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。 上面內容是初中數學有理數的乘除法知識點總結,想必大家都已經做好筆記了,接下來還有更詳細的初中數學知識點盡在哦,希望同學們關注了。 初中數學知識點總結:平面直角坐標系 下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。 平面直角坐標系 平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。 水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。 平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合 三個規(guī)定: 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。 相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。 初中數學知識點:平面直角坐標系的構成 對于平面直角坐標系的構成內容,下面我們一起來學習哦。 平面直角坐標系的構成 在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。 通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。 初中數學知識點:點的坐標的性質 下面是對數學中點的坐標的性質知識學習,同學們認真看看哦。 點的坐標的性質 建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。 對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。 一個點在不同的象限或坐標軸上,點的坐標不一樣。 【初一數學知識點總結】相關文章: 人教版數學初一知識點總結04-24 初一的數學知識點總結04-24 初一數學知識點總結04-24 初一數學全部知識點總結04-22 初一數學下冊知識點總結11-22 初一數學下冊知識點總結歸納08-13 初一數學上冊知識點總結11-22 人教版初一數學知識點總結04-25 初一數學基本知識點總結08-11 初一數學下冊知識點總結6篇11-22初一數學知識點總結2
初一數學知識點總結3
初一數學知識點總結4
初一數學知識點總結5
初一數學知識點總結6
初一數學知識點總結7
初一數學知識點總結8
初一數學知識點總結9
初一數學知識點總結10
初一數學知識點總結11
初一數學知識點總結12
初一數學知識點總結13
初一數學知識點總結14
初一數學知識點總結15