毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2023-07-24 11:16:36 振濠 知識(shí)點(diǎn)總結(jié) 我要投稿

初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  總結(jié)是對(duì)某一特定時(shí)間段內(nèi)的學(xué)習(xí)和工作生活等表現(xiàn)情況加以回顧和分析的一種書面材料,它能幫我們理順知識(shí)結(jié)構(gòu),突出重點(diǎn),突破難點(diǎn),讓我們好好寫一份總結(jié)吧。你所見過的總結(jié)應(yīng)該是什么樣的?下面是小編精心整理的初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎閱讀與收藏。

初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1

  第一章勾股定理

  1、探索勾股定理

  ①勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2

  2、一定是直角三角形嗎

 、偃绻切蔚娜呴La b c滿足a2+b2=c2,那么這個(gè)三角形一定是直角三角形

  3、勾股定理的應(yīng)用

  第二章實(shí)數(shù)

  1、認(rèn)識(shí)無理數(shù)

 、儆欣頂(shù):總是可以用有限小數(shù)和無限循環(huán)小數(shù)表示

 、跓o理數(shù):無限不循環(huán)小數(shù)

  2、平方根

 、偎銛(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x就叫做a的算數(shù)平方根

  ②特別地,我們規(guī)定:0的算數(shù)平方根是0

 、燮椒礁阂话愕兀绻粋(gè)數(shù)x的平方等于a,即x2=a。那么這個(gè)數(shù)x就叫做a的平方根,也叫做二次方根

 、芤粋(gè)正數(shù)有兩個(gè)平方根;0只有一個(gè)平方根,它是0本身;負(fù)數(shù)沒有平方根

 、菡龜(shù)有兩個(gè)平方根,一個(gè)是a的算數(shù)平方,另一個(gè)是—,它們互為相反數(shù),這兩個(gè)平方根合起來可記作±

 、揲_平方:求一個(gè)數(shù)a的平方根的運(yùn)算叫做開平方,a叫做被開方數(shù)

  3、立方根

 、倭⒎礁阂话愕兀绻粋(gè)數(shù)x的立方等于a,即x3=a,那么這個(gè)數(shù)x就叫做a的立方根,也叫三次方根

 、诿總(gè)數(shù)都有一個(gè)立方根,正數(shù)的立方根是正數(shù);0立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。

  ③開立方:求一個(gè)數(shù)a的立方根的運(yùn)算叫做開立方,a叫做被開方數(shù)

  4、估算

 、俟浪悖话憬Y(jié)果是相對(duì)復(fù)雜的小數(shù),估算有精確位數(shù)

  5、用計(jì)算機(jī)開平方

  6、實(shí)數(shù)

 、賹(shí)數(shù):有理數(shù)和無理數(shù)的統(tǒng)稱

 、趯(shí)數(shù)也可以分為正實(shí)數(shù)、0、負(fù)實(shí)數(shù)

 、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上表示,數(shù)軸上每一個(gè)點(diǎn)都對(duì)應(yīng)一個(gè)實(shí)數(shù),在數(shù)軸上,右邊的點(diǎn)永遠(yuǎn)比左邊的點(diǎn)表示的數(shù)大

  7、二次根式

 、俸x:一般地,形如(a≥0)的式子叫做二次根式,a叫做被開方數(shù)

 、谧詈喍胃剑阂话愕,被開方數(shù)不含分母,也不含能開的盡方的因數(shù)或因式,這樣的二次根式,叫做最簡二次根式

 、刍啎r(shí),通常要求最終結(jié)果中分母不含有根號(hào),而且各個(gè)二次根式時(shí)最簡二次根式

  第三章位置與坐標(biāo)

  1、確定位置

 、僭谄矫鎯(nèi),確定一個(gè)物體的位置一般需要兩個(gè)數(shù)據(jù)

  2、平面直角坐標(biāo)系

 、俸x:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系

 、谕ǔ5兀瑑蓷l數(shù)軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或者橫軸,豎直的數(shù)軸叫y軸和縱軸,二者統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o被稱為直角坐標(biāo)系的原點(diǎn)

 、劢⒘似矫嬷苯亲鴺(biāo)系,平面內(nèi)的點(diǎn)就可以用一組有序?qū)崝?shù)對(duì)來表示

 、茉谄矫嬷苯亲鴺(biāo)系中,兩條坐標(biāo)軸將坐標(biāo)平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時(shí)針方向叫做第二象限,第三象限,第四象限,坐標(biāo)軸上的點(diǎn)不在任何一個(gè)象限

 、菰谥苯亲鴺(biāo)系中,對(duì)于平面上任意一點(diǎn),都有唯一的一個(gè)有序?qū)崝?shù)對(duì)(即點(diǎn)的坐標(biāo))與它對(duì)應(yīng);反過來,對(duì)于任意一個(gè)有序?qū)崝?shù)對(duì),都有平面上唯一的一點(diǎn)與它對(duì)應(yīng)

  3、軸對(duì)稱與坐標(biāo)變化

  ①關(guān)于x軸對(duì)稱的兩個(gè)點(diǎn)的坐標(biāo),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對(duì)稱的兩個(gè)點(diǎn)的坐標(biāo),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)

  第四章一次函數(shù)

  1、函數(shù)

 、僖话愕,如果在一個(gè)變化過程中有兩個(gè)變量x和y,并且對(duì)于變量x的每一個(gè)值,變量y都有唯一的值與它對(duì)應(yīng),那么我們稱y是x的函數(shù)其中x是自變量

 、诒硎竞瘮(shù)的方法一般有:列表法、關(guān)系式法和圖象法

 、蹖(duì)于自變量在可取值范圍內(nèi)的一個(gè)確定的值a,函數(shù)有唯一確定的對(duì)應(yīng)值,這個(gè)對(duì)應(yīng)值稱為當(dāng)自變量等于a的函數(shù)值

  2、一次函數(shù)與正比例函數(shù)

 、偃魞蓚(gè)變量x,y間的對(duì)應(yīng)關(guān)系可以表示成y=kx+b(k、b為常數(shù),k≠0)的形式,則稱y是x的一次函數(shù),特別的,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)

  3、一次函數(shù)的圖像

  ①正比例函數(shù)y=kx的圖像是一條經(jīng)過原點(diǎn)(0,0)的直線。因此,畫正比例函數(shù)圖像是,只要再確定一點(diǎn),過這個(gè)點(diǎn)與原點(diǎn)畫直線就可以了

 、谠谡壤瘮(shù)y=kx中,當(dāng)k>0時(shí),y的值隨著x值的增大而減小;當(dāng)k<0時(shí),y的值隨著x的值增大而減小

  ③一次函數(shù)y=kx+b的圖像是一條直線,因此畫一次函數(shù)圖像時(shí),只要確定兩個(gè)點(diǎn),再過這兩點(diǎn)畫直線就可以了。一次函數(shù)y=kx+b的圖像也稱為直線y=kx+b

  ④一次函數(shù)y=kx+b的圖像經(jīng)過點(diǎn)(0,b)。當(dāng)k>0時(shí),y的值隨著x值的增大而增大;當(dāng)k<0時(shí),y的值隨著x值的增大而減小

  4、一次函數(shù)的應(yīng)用

 、僖话愕,當(dāng)一次函數(shù)y=kx+b的函數(shù)值為0時(shí),相應(yīng)的自變量的值就是方程kx+b=0的解,從圖像上看,一次函數(shù)y=kx+b的圖像與x軸交點(diǎn)的橫坐標(biāo)就是方程kx+b=0

  第五章二元一次方程組

  1、認(rèn)識(shí)二元一次方程組

 、俸袃蓚(gè)未知數(shù),并且所含有未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程

 、诠埠袃蓚(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組

  ③二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解

  2、求解二元一次方程組

 、賹⑵渲幸粋(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來,并代入另個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程,這種解方程組的方法稱為代入消元法,簡稱代入法

  ②通過兩式子加減,消去其中一個(gè)未知數(shù),這種解二元一次方程組的方法叫做加減消元法,簡稱加減法

  3、應(yīng)用二元一次方程組

 、匐u兔同籠

  4、應(yīng)用二元一次方程組

 、僭鰷p收支

  5、應(yīng)用二元一次方程組

 、倮锍瘫系臄(shù)

  6、二元一次方程組與一次函數(shù)

  ①一般地,以一個(gè)二元一次方程的解為坐標(biāo)的點(diǎn)組成的圖像與相應(yīng)的一次函數(shù)的圖像相同,是一條直線

 、谝话愕,從圖形的角度看,確定兩條直線相交點(diǎn)的坐標(biāo),相當(dāng)于求相應(yīng)的二元一次方程組的解,解一個(gè)二元一次方程組相當(dāng)于確定相應(yīng)兩條直線交點(diǎn)的坐標(biāo)

  7、用二元一次方程組確定一次函數(shù)表達(dá)式

 、傧仍O(shè)出函數(shù)表達(dá)式,再根據(jù)所給條件確定表達(dá)式中未知的系數(shù),從而得到函數(shù)表達(dá)式的方法,叫做待定系數(shù)法。

  8、三元一次方程組

 、僭谝粋(gè)方程組中,各個(gè)式子都含有三個(gè)未知數(shù),并且所含有未知數(shù)的項(xiàng)的次數(shù)都是1,這樣的方程叫做三元一次方程

 、谙襁@樣,共含有三個(gè)未知數(shù)的三個(gè)一次方程所組成的一組方程,叫做三元一次方程組

 、廴淮畏匠探M中各個(gè)方程的公共解,叫做這個(gè)三元一次方程組的解。

  第六章數(shù)據(jù)的分析

  1、平均數(shù)

 、僖话愕,對(duì)于n個(gè)數(shù),我們把(x1+x2+···+xn)叫做這n個(gè)數(shù)的算數(shù)平均數(shù),簡稱平均數(shù)記為。

 、谠趯(shí)際問題中,一組數(shù)據(jù)里的各個(gè)數(shù)據(jù)的“重要程度”未必相同,因而在計(jì)算,這組數(shù)據(jù)的平均數(shù)時(shí),往往給每個(gè)數(shù)據(jù)一個(gè)權(quán),叫做加權(quán)平均數(shù)

  2、中位數(shù)與眾數(shù)

 、僦形粩(shù):一般地,n個(gè)數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)

  ②一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)

 、燮骄鶖(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢(shì)的統(tǒng)計(jì)量

 、苡(jì)算平均數(shù)時(shí),所有數(shù)據(jù)都參加運(yùn)算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實(shí)生活中較為常用,但他容易受極端值影響。

 、葜形粩(shù)的優(yōu)點(diǎn)是計(jì)算簡單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息

  ⑥各個(gè)數(shù)據(jù)重復(fù)次數(shù)大致相等時(shí),眾數(shù)往往沒有特別意義

  3、從統(tǒng)計(jì)圖分析數(shù)據(jù)的集中趨勢(shì)

  4、數(shù)據(jù)的離散程度

  ①實(shí)際生活中,除了關(guān)心數(shù)據(jù)的集中趨勢(shì)外,人們還關(guān)注數(shù)據(jù)的離散程度,即它們相對(duì)于集中趨勢(shì)的偏離情況。一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,(稱為極差),就是刻畫數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量

  ②數(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標(biāo)準(zhǔn)差刻畫

 、鄯讲钍歉鱾(gè)數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)

  ④其中是平均數(shù),s2是方差,而標(biāo)準(zhǔn)差就是方差的算術(shù)平方根

  ⑤一般而言,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。

  第七章平行線的證明

  1、為什么要證明

  ①實(shí)驗(yàn)、觀察、歸納得到的結(jié)論可能正確,也可能不正確,因此,要判斷一個(gè)數(shù)學(xué)結(jié)論是否正確,僅僅依靠實(shí)驗(yàn)、觀察、歸納是不夠的,必須進(jìn)行有根有據(jù)的證明

  2、定義與命題

 、僮C明時(shí),為了交流方便,必須對(duì)某些名稱和術(shù)語形成共同的認(rèn)識(shí),為此,就要對(duì)名稱和術(shù)語的含義加以描述,做出明確的規(guī)定,也就是給它們的定義

  ②判斷一件事情的句子,叫做命題

 、垡话愕,每個(gè)命題都由條件和結(jié)論兩部分組成。條件是已知的選項(xiàng),結(jié)論是已知選項(xiàng)推出的事項(xiàng)。命題通?梢詫懗伞叭绻....那么....”的形式,其中“如果”引出的部分是條件,“那么”引出的部分是結(jié)論

 、苷_的命題稱為真命題,不正確的命題稱為假命題

 、菀f明一個(gè)命題是假命題,常?梢耘e出一個(gè)例子,使它具備命題的條件,而不具有命題的結(jié)論,這種例子稱為反例

 、逇W幾里得在編寫《原本》時(shí),挑選了一部分?jǐn)?shù)學(xué)名詞和一部分公認(rèn)的真命題作為證實(shí)其他命題的出發(fā)點(diǎn)和依據(jù)。其中數(shù)學(xué)名詞稱為原名,公認(rèn)的真命題稱為公理,除了公理外,其他命題的真假都需要通過演繹推理的方法進(jìn)行判斷

 、哐堇[推理的過程稱為證明,經(jīng)過證明的真命題稱為定理,每個(gè)定理都只能用公理、定義和已經(jīng)證明為真的命題來證明

  a.本套教科書選用九條基本事實(shí)作為證明的出發(fā)點(diǎn)和依據(jù),其中八條是:兩點(diǎn)確定一條直線

  b.兩點(diǎn)之間線段最短

  c.同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直

  d.兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行(簡述為:同位角相等,兩直線平行)

  e.過直線外一點(diǎn)有且只有一條直線與這條直線平行

  f.兩邊及其夾角分別相等的兩個(gè)三角形全等

  g.兩角及其夾邊分別相等的兩個(gè)三角形全等

  h.三邊分別相等的兩個(gè)三角形全等

 、啻送猓瑪(shù)與式的運(yùn)算律和運(yùn)算法則、等式的有關(guān)性質(zhì),以及反映大小關(guān)系的有關(guān)性質(zhì)都可以作為證明的依據(jù)

 、岫ɡ恚和牵ǖ冉牵┑难a(bǔ)角相等

  同角(等角)的余角相等

  三角形的任意兩邊之和大于第三邊

  對(duì)頂角相等

  3、平行線的判定

  ①定理:兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么這兩條直線平行,簡述為:內(nèi)錯(cuò)角相等,兩直線平行

 、诙ɡ恚簝蓷l直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行,簡述為:同旁內(nèi)角互補(bǔ),兩直線平行。

  4、平行線的性質(zhì)

 、俣ɡ恚簝蓷l平行直線被第三條直線所截,同位角相等。簡述為:兩直線平行,同位角相等

 、诙ɡ恚簝蓷l平行直線被第三條直線所截,內(nèi)錯(cuò)角相等。簡述為:兩直線平行,內(nèi)錯(cuò)角相等

 、鄱ɡ恚簝蓷l平行直線被第三條直線所截,同旁內(nèi)角互補(bǔ)。簡述為:兩直線平行,同旁內(nèi)角互補(bǔ)

 、芏ɡ恚浩叫杏谕粭l直線的兩條直線平行

  5、三角形內(nèi)角和定理

 、偃切蝺(nèi)角和定理:三角形的內(nèi)角和等于180°

 、诙ɡ恚喝切蔚囊粋(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

  定理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

 、畚覀兺ㄟ^三角形的內(nèi)角和定理直接推導(dǎo)出兩個(gè)新定理。像這樣,由一個(gè)基本事實(shí)或定理直接推出的定理,叫做這個(gè)基本事實(shí)或定理的推論,推論可以當(dāng)定理使用。

  初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1

  軸對(duì)稱

  1.如果一個(gè)平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸。

  2.性質(zhì)

  (1)成軸對(duì)稱的兩個(gè)圖形全等;

  (2)如果兩個(gè)圖形成軸對(duì)稱,那么對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線。

  一次函數(shù)

  (一)一次函數(shù)是函數(shù)中的一種,一般形如y=kx+b(k,b是常數(shù),k≠0),其中x是自變量,y是因變量。特別地,當(dāng)b=0時(shí),y=kx+b(k為常數(shù),k≠0),y叫做x的正比例函數(shù)。

  (二)函數(shù)三要素

  1.定義域:設(shè)x、y是兩個(gè)變量,變量x的變化范圍為D,如果對(duì)于每一個(gè)數(shù)x∈D,變量y遵照一定的法則總有確定的數(shù)值與之對(duì)應(yīng),則稱y是x的函數(shù),記作y=f(x),x∈D,x稱為自變量,y稱為因變量,數(shù)集D稱為這個(gè)函數(shù)的定義域。

  2.在函數(shù)經(jīng)典定義中,因變量改變而改變的取值范圍叫做這個(gè)函數(shù)的值域,在函數(shù)現(xiàn)代定義中是指定義域中所有元素在某個(gè)對(duì)應(yīng)法則下對(duì)應(yīng)的所有的象所組成的集合。如:f(x)=x,那么f(x)的取值范圍就是函數(shù)f(x)的值域。

  3.對(duì)應(yīng)法則:一般地說,在函數(shù)記號(hào)y=f(x)中,“f”即表示對(duì)應(yīng)法則,等式y(tǒng)=f(x)表明,對(duì)于定義域中的任意的x值,在對(duì)應(yīng)法則“f”的作用下,即可得到值域中唯一y值。

  (三)一次函數(shù)的表示方法

  1.解析式法:用含自變量x的式子表示函數(shù)的方法叫做解析式法。

  2.列表法:把一系列x的值對(duì)應(yīng)的函數(shù)值y列成一個(gè)表來表示的函數(shù)關(guān)系的方法叫做列表法。

  3.圖像法:用圖象來表示函數(shù)關(guān)系的方法叫做圖象法。

  (四)一次函數(shù)的性質(zhì)

  1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等于0,且k,b為常數(shù))。

  2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的交點(diǎn),坐標(biāo)為(0,b)。當(dāng)y=0時(shí),該函數(shù)圖象在x軸上的交點(diǎn)坐標(biāo)為(-b/k,0)。

  3.k為一次函數(shù)y=kx+b的斜率,k=tanθ(角θ為一次函數(shù)圖象與x軸正方向夾角,θ≠90°)。

  4.當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖象變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

  5.函數(shù)圖象性質(zhì):當(dāng)k相同,且b不相等,圖像平行;當(dāng)k不同,且b相等,圖象相交于Y軸;當(dāng)k互為負(fù)倒數(shù)時(shí),兩直線垂直。

  6.平移時(shí):上加下減在末尾,左加右減在中間。

  直角三角形

  1.勾股定理及其逆定理

  定理:直角三角形的兩條直角邊的等于的平方。

  逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形。

  2.含30°的直角三角形的邊的性質(zhì)

  定理:在直角三角形中,如果一個(gè)銳角等于30°,那么等于的一半。

  3.直角三角形斜邊上的中線等于斜邊的一半。

  要點(diǎn)詮釋:①勾股定理的逆定理在語言敘述的時(shí)候一定要注意,不能說成“兩條邊的平方和等于斜邊的平方”,應(yīng)該說成“三角形兩邊的平方和等于第三邊的平方”。

 、谥苯侨切蔚娜扰卸ǚ椒,HL還有SSS,SAS,ASA,AAS,一共有5種判定方法。

  圖形的平移與旋轉(zhuǎn)

  1.平移,是指在同一平面內(nèi),將一個(gè)圖形上的所有點(diǎn)都按照某個(gè)直線方向做相同距離的移動(dòng),這樣的圖形運(yùn)動(dòng)叫做圖形的平移運(yùn)動(dòng),簡稱平移。

  2.平移性質(zhì)

  (1)圖形平移前后的形狀和大小沒有變化,只是位置發(fā)生變化。

  (2)圖形平移后,對(duì)應(yīng)點(diǎn)連成的線段平行(或在同一直線上)且相等。

  拓展閱讀:初中數(shù)學(xué)提高解題速度的方法

  認(rèn)真仔細(xì)審題

  對(duì)于一道具體的習(xí)題,解題時(shí)最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。

  有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長時(shí)間解不出來,還找不到原因,想快卻慢了。所以,在實(shí)際解題時(shí),應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。

  做好歸納總結(jié)

  在解過一定數(shù)量的習(xí)題之后,對(duì)所涉及到的知識(shí)、解題方法進(jìn)行歸納總結(jié),以便使解題思路更為清晰,就能達(dá)到舉一反三的效果,對(duì)于類似的習(xí)題一目了然,可以節(jié)約大量的解題時(shí)間。

  熟悉習(xí)題內(nèi)容

  解題、做練習(xí)只是學(xué)習(xí)過程中的一個(gè)環(huán)節(jié),而不是學(xué)習(xí)的全部,你不能為解題而解題。解題時(shí),我們的概念越清晰,對(duì)公式、定理和規(guī)則越熟悉,解題速度就越快。

  因此,我們?cè)诮忸}之前,應(yīng)通過閱讀教科書和做簡單的練習(xí),先熟悉、記憶和辨別這些基本內(nèi)容,正確理解其涵義的本質(zhì),接著馬上就做后面所配的練習(xí),一刻也不要停留。

  學(xué)會(huì)主動(dòng)畫圖

  畫圖是一個(gè)翻譯的過程,把解題時(shí)的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關(guān)系就變得一目了然。尤其是對(duì)于幾何題,包括解析幾何題,若不會(huì)畫圖,有時(shí)簡直是無從下手。

  因此,牢記各種題型的.基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過程和條件,對(duì)于提高解題速度非常重要。

  逐步增加難度

  人們認(rèn)識(shí)事物的過程都是從簡單到復(fù)雜。簡單的問題解多了,從而使概念清晰了,對(duì)公式、定理以及解題步驟熟悉了,解題時(shí)就會(huì)形成跳躍性思維,解題的速度就會(huì)大大提高。

  我們?cè)趯W(xué)習(xí)時(shí),應(yīng)根據(jù)自己的能力,先去解那些看似簡單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會(huì)達(dá)到事半功倍的效果。

  初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 3

 。ㄒ唬┻\(yùn)用公式法:

  我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項(xiàng)式分解因式。于是有:

  a2—b2=(a+b)(a—b)

  a2+2ab+b2=(a+b)2

  a2—2ab+b2=(a—b)2

  如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。

 。ǘ┢椒讲罟

  1.平方差公式

 。1)式子:a2—b2=(a+b)(a—b)

  (2)語言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。

 。ㄈ┮蚴椒纸

  1.因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。

  2.因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。

 。ㄋ模┩耆椒焦

  (1)把乘法公式(a+b)2=a2+2ab+b2和(a—b)2=a2—2ab+b2反過來,就可以得到:

  a2+2ab+b2 =(a+b)2

  a2—2ab+b2 =(a—b)2

  這就是說,兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。

  把a(bǔ)2+2ab+b2和a2—2ab+b2這樣的式子叫完全平方式。

  上面兩個(gè)公式叫完全平方公式。

 。2)完全平方式的形式和特點(diǎn)

 、夙(xiàng)數(shù):三項(xiàng)

 、谟袃身(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的符號(hào)相同。

 、塾幸豁(xiàng)是這兩個(gè)數(shù)的積的兩倍。

  (3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。

 。4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。

  (5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。

  (五)分組分解法

  我們看多項(xiàng)式am+ an+ bm+ bn,這四項(xiàng)中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

  如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式。

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m +n)

  做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x。但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m+ n)

  =(m +n)×(a +b)。

  這種利用分組來分解因式的方法叫做分組分解法。從上面的例子可以看出,如果把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來分解因式。

 。┨峁蚴椒

  1.在運(yùn)用提取公因式法把一個(gè)多項(xiàng)式因式分解時(shí),首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式。當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個(gè)多項(xiàng)式時(shí),可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個(gè)多項(xiàng)式因式看作一個(gè)整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時(shí)候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃,或改變符?hào),直到可確定多項(xiàng)式的公因式。

  2.運(yùn)用公式x2 +(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:

  1.必須先將常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積,且這兩個(gè)因數(shù)的代數(shù)和等于一次項(xiàng)的系數(shù)。

  2.將常數(shù)項(xiàng)分解成滿足要求的兩個(gè)因數(shù)積的多次嘗試,一般步驟:

 、倭谐龀(shù)項(xiàng)分解成兩個(gè)因數(shù)的積各種可能情況;

 、趪L試其中的哪兩個(gè)因數(shù)的和恰好等于一次項(xiàng)系數(shù)。

  3.將原多項(xiàng)式分解成(x+q)(x+p)的形式。

 。ㄆ撸┓质降某顺

  1.把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。

  2.分式進(jìn)行約分的目的是要把這個(gè)分式化為最簡分式。

  3.如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式。如果分子或分母中的多項(xiàng)式不能分解因式,此時(shí)就不能把分子、分母中的某些項(xiàng)單獨(dú)約分。

  4.分式約分中注意正確運(yùn)用乘方的符號(hào)法則,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。

  5.分式的分子或分母帶符號(hào)的n次方,可按分式符號(hào)法則,變成整個(gè)分式的符號(hào),然后再按—1的偶次方為正、奇次方為負(fù)來處理。當(dāng)然,簡單的分式之分子分母可直接乘方。

  6.注意混合運(yùn)算中應(yīng)先算括號(hào),再算乘方,然后乘除,最后算加減。

 。ò耍┓?jǐn)?shù)的加減法

  1.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形。約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來。

  2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。

  3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。

  4.通分的依據(jù):分式的基本性質(zhì)。

  5.通分的關(guān)鍵:確定幾個(gè)分式的公分母。

  通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。

  6.類比分?jǐn)?shù)的通分得到分式的通分:

  把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。

  7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

  同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。

  8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減。

  9.同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號(hào)。

  10.對(duì)于整式和分式之間的加減運(yùn)算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分。

  11.異分母分式的加減運(yùn)算,首先觀察每個(gè)公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運(yùn)算簡化。

  12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡分式。

  (九)含有字母系數(shù)的一元一次方程

  1.含有字母系數(shù)的一元一次方程

  引例:一數(shù)的a倍(a≠0)等于b,求這個(gè)數(shù)。用x表示這個(gè)數(shù),根據(jù)題意,可得方程ax=b(a≠0)

  在這個(gè)方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對(duì)x來說,字母a是x的系數(shù),b是常數(shù)項(xiàng)。這個(gè)方程就是一個(gè)含有字母系數(shù)的一元一次方程。

  含有字母系數(shù)的方程的解法與以前學(xué)過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個(gè)式子的值不能等于零

  初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 4

  一、實(shí)數(shù)的概念及分類

  1、實(shí)數(shù)的分類

  一是分類是:正數(shù)、負(fù)數(shù)、0;

  另一種分類是:有理數(shù)、無理數(shù)

  將兩種分類進(jìn)行組合:負(fù)有理數(shù),負(fù)無理數(shù),0,正有理數(shù),正無理數(shù)

  2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。

  在理解無理數(shù)時(shí),要抓住“無限不循環(huán)”這一時(shí)之,歸納起來有四類:

  (1)開方開不盡的數(shù),如等;

  (2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;

  (3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;

  (4)某些三角函數(shù)值,如sin60o等

  二、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對(duì)值

  1、相反數(shù)

  實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。

  2、絕對(duì)值

  在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對(duì)值。(|a|≥0)。零的絕對(duì)值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

  3、倒數(shù)

  如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

  4、數(shù)軸

  規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。

  解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。

  初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 5

  在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形.

  (1)多邊形的一些要素:

  邊:組成多邊形的各條線段叫做多邊形的邊.

  頂點(diǎn):每相鄰兩條邊的公共端點(diǎn)叫做多邊形的頂點(diǎn).

  內(nèi)角:多邊形相鄰兩邊組成的角叫多邊形的內(nèi)角,一個(gè)n邊形有n個(gè)內(nèi)角。

  外角:多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

  (2)在定義中應(yīng)注意:

 、僖恍┚段(多邊形的邊數(shù)是大于等于3的正整數(shù));

 、谑孜岔槾蜗噙B,二者缺一不可;

 、劾斫鈺r(shí)要特別注意“在同一平面內(nèi)”這個(gè)條件,其目的是為了排除幾個(gè)點(diǎn)不共面的情況,即空間

  初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 6

  一次函數(shù)

  (1)正比例函數(shù):一般地,形如y=kx(k是常數(shù),k?0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù);

  (2)正比例函數(shù)圖像特征:一些過原點(diǎn)的直線;

  (3)圖像性質(zhì):

  ①當(dāng)k>0時(shí),函數(shù)y=kx的圖像經(jīng)過第一、三象限,從左向右上升,即隨著x的增大y也增大;②當(dāng)k<0時(shí),函數(shù)y=kx的圖像經(jīng)過第二、四象限,從左向右下降,即隨著x的增大y反而減小;

  (4)求正比例函數(shù)的解析式:已知一個(gè)非原點(diǎn)即可;

  (5)畫正比例函數(shù)圖像:經(jīng)過原點(diǎn)和點(diǎn)(1,k);(或另外一個(gè)非原點(diǎn))

  (6)一次函數(shù):一般地,形如y=kx+b(k、b是常數(shù),k?0)的函數(shù),叫做一次函數(shù);

  (7)正比例函數(shù)是一種特殊的一次函數(shù);(因?yàn)楫?dāng)b=0時(shí),y=kx+b即為y=kx)

  (8)一次函數(shù)圖像特征:一些直線;

  (9)性質(zhì):

 、賧=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個(gè)單位長度而得;(當(dāng)b>0,向上平移;當(dāng)b<0,向下平移)

 、诋(dāng)k>0時(shí),直線y=kx+b由左至右上升,即y隨著x的增大而增大;

  ③當(dāng)k<0時(shí),直線y=kx+b由左至右下降,即y隨著x的增大而減小;

 、墚(dāng)b>0時(shí),直線y=kx+b與y軸正半軸有交點(diǎn)為(0,b);

 、莓(dāng)b<0時(shí),直線y=kx+b與y軸負(fù)半軸有交點(diǎn)為(0,b);

  (10)求一次函數(shù)的解析式:即要求k與b的值;

  (11)畫一次函數(shù)的圖像:已知兩點(diǎn);

  用函數(shù)觀點(diǎn)看方程(組)與不等式

  (1)解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值;從圖像上看,這相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo)的值;

  (2)解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(小)于0時(shí),求自變量相應(yīng)的取值范圍;

  (3)每個(gè)二元一次方程都對(duì)應(yīng)一個(gè)一元一次函數(shù),于是也對(duì)應(yīng)一條直線;

  (4)一般地,每個(gè)二元一次方程組都對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線。從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,以及這個(gè)函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo);

  初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 7

  1、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  2、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

  3、角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  4、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  5、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

  7、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  8、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  9、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  10、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)

  初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 8

  一次函數(shù)

  (1)正比例函數(shù):一般地,形如y=kx(k是常數(shù),k?0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù);

  (2)正比例函數(shù)圖像特征:一些過原點(diǎn)的直線;

  (3)圖像性質(zhì):

  ①當(dāng)k>0時(shí),函數(shù)y=kx的圖像經(jīng)過第一、三象限,從左向右上升,即隨著x的增大y也增大;②當(dāng)k<0時(shí),函數(shù)y=kx的圖像經(jīng)過第二、四象限,從左向右下降,即隨著x的增大y反而減小;

  (4)求正比例函數(shù)的解析式:已知一個(gè)非原點(diǎn)即可;

  (5)畫正比例函數(shù)圖像:經(jīng)過原點(diǎn)和點(diǎn)(1,k);(或另外一個(gè)非原點(diǎn))

  (6)一次函數(shù):一般地,形如y=kx+b(k、b是常數(shù),k?0)的函數(shù),叫做一次函數(shù);

  (7)正比例函數(shù)是一種特殊的一次函數(shù);(因?yàn)楫?dāng)b=0時(shí),y=kx+b即為y=kx)

  (8)一次函數(shù)圖像特征:一些直線;

  (9)性質(zhì):

 、賧=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個(gè)單位長度而得;(當(dāng)b>0,向上平移;當(dāng)b<0,向下平移)

 、诋(dāng)k>0時(shí),直線y=kx+b由左至右上升,即y隨著x的增大而增大;

  ③當(dāng)k<0時(shí),直線y=kx+b由左至右下降,即y隨著x的增大而減小;

 、墚(dāng)b>0時(shí),直線y=kx+b與y軸正半軸有交點(diǎn)為(0,b);

 、莓(dāng)b<0時(shí),直線y=kx+b與y軸負(fù)半軸有交點(diǎn)為(0,b);

  (10)求一次函數(shù)的解析式:即要求k與b的值;

  (11)畫一次函數(shù)的圖像:已知兩點(diǎn);

  用函數(shù)觀點(diǎn)看方程(組)與不等式

  (1)解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值;從圖像上看,這相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo)的值;

  (2)解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(小)于0時(shí),求自變量相應(yīng)的取值范圍;

  (3)每個(gè)二元一次方程都對(duì)應(yīng)一個(gè)一元一次函數(shù),于是也對(duì)應(yīng)一條直線;

  (4)一般地,每個(gè)二元一次方程組都對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線。從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,以及這個(gè)函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo);

  初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 9

  一、全等三角形

  1.定義:能夠完全重合的兩個(gè)三角形叫做全等三角形。

  理解:①全等三角形形狀與大小完全相等,與位置無關(guān);②一個(gè)三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形;③三角形全等不因位置發(fā)生變化而改變。

  2、全等三角形有哪些性質(zhì)

 。1)全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等。

  理解:①長邊對(duì)長邊,短邊對(duì)短邊;最大角對(duì)最大角,最小角對(duì)最小角;②對(duì)應(yīng)角的對(duì)邊為對(duì)應(yīng)邊,對(duì)應(yīng)邊對(duì)的角為對(duì)應(yīng)角。

 。2)全等三角形的周長相等、面積相等。

 。3)全等三角形的對(duì)應(yīng)邊上的對(duì)應(yīng)中線、角平分線、高線分別相等。

  3、全等三角形的判定

  邊邊邊:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可簡寫成“SSS”)

  1、性質(zhì):角的平分線上的點(diǎn)到角的兩邊的距離相等.

  2、判定:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上。

  二、學(xué)習(xí)全等三角形應(yīng)注意以下幾個(gè)問題:

 。1)要正確區(qū)分“對(duì)應(yīng)邊”與“對(duì)邊”,“對(duì)應(yīng)角”與“對(duì)角”的不同含義;

 。2表示兩個(gè)三角形全等時(shí),表示對(duì)應(yīng)頂點(diǎn)的字母要寫在對(duì)應(yīng)的位置上;

 。3)“有三個(gè)角對(duì)應(yīng)相等”或“有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的兩個(gè)三角形不一定全等;

 。4)時(shí)刻注意圖形中的隱含條件,如“公共角” 、“公共邊”、“對(duì)頂角”

 。5)截長補(bǔ)短法證三角形全等。

  初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 10

  1、正方形的概念

  有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。

  2、正方形的性質(zhì)

  (1)具有平行四邊形、矩形、菱形的一切性質(zhì);

  (2)正方形的四個(gè)角都是直角,四條邊都相等;

  (3)正方形的兩條對(duì)角線相等,并且互相垂直平分,每一條對(duì)角線平分一組對(duì)角;

  (4)正方形是軸對(duì)稱圖形,有4條對(duì)稱軸;

  (5)正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形,兩條對(duì)角線把正方形分成四個(gè)全等的小等腰直角三角形;

  (6)正方形的一條對(duì)角線上的一點(diǎn)到另一條對(duì)角線的兩端點(diǎn)的距離相等。

  3、正方形的判定

  (1)判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:

  先證它是矩形,再證有一組鄰邊相等。

  先證它是菱形,再證有一個(gè)角是直角。

  (2)判定一個(gè)四邊形為正方形的一般順序如下:

  先證明它是平行四邊形;

  再證明它是菱形(或矩形);

  最后證明它是矩形(或菱形)。

【初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)01-05

初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-11

初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié) 8篇01-05

初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié) (8篇)01-05

初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版07-20

初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié) (集錦8篇)01-05

初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)07-19

初二數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)06-26

初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8篇11-11

初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9篇11-16