毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

函數(shù)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-10-06 09:19:42 進(jìn)利 知識(shí)點(diǎn)總結(jié) 我要投稿

函數(shù)知識(shí)點(diǎn)總結(jié)

  總結(jié)是指對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況進(jìn)行分析研究,做出帶有規(guī)律性結(jié)論的書面材料,它可以有效鍛煉我們的語言組織能力,讓我們好好寫一份總結(jié)吧。那么我們?cè)撛趺慈懣偨Y(jié)呢?以下是小編精心整理的函數(shù)知識(shí)點(diǎn)總結(jié),僅供參考,歡迎大家閱讀。

函數(shù)知識(shí)點(diǎn)總結(jié)

  函數(shù)知識(shí)點(diǎn)總結(jié) 1

 。ㄒ唬⒂成、函數(shù)、反函數(shù)

  1、對(duì)應(yīng)、映射、函數(shù)三個(gè)概念既有共性又有區(qū)別,映射是一種特殊的對(duì)應(yīng),而函數(shù)又是一種特殊的映射。

  2、對(duì)于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):

 。1)掌握構(gòu)成函數(shù)的三要素,會(huì)判斷兩個(gè)函數(shù)是否為同一函數(shù)。

  (2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問題尋求變量間的函數(shù)關(guān)系式,特別是會(huì)求分段函數(shù)的解析式。

 。3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù)。

  3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

  (1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

  (2)由y=f(x)的解析式求出x=f—1(y);

 。3)將x,y對(duì)換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f—1(x),并注明定義域。

  注意:

  ①對(duì)于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起。

 、谑煜さ膽(yīng)用,求f—1(x0)的值,合理利用這個(gè)結(jié)論,可以避免求反函數(shù)的過程,從而簡化運(yùn)算。

 。ǘ⒑瘮(shù)的解析式與定義域

  1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對(duì)應(yīng)法則的同時(shí),求出函數(shù)的定義域。求函數(shù)的定義域一般有三種類型:

 。1)有時(shí)一個(gè)函數(shù)來自于一個(gè)實(shí)際問題,這時(shí)自變量x有實(shí)際意義,求定義域要結(jié)合實(shí)際意義考慮;

  (2)已知一個(gè)函數(shù)的解析式求其定義域,只要使解析式有意義即可。如:

  ①分式的分母不得為零;

 、谂即畏礁谋婚_方數(shù)不小于零;

  ③對(duì)數(shù)函數(shù)的真數(shù)必須大于零;

 、苤笖(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

 、萑呛瘮(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等。

  應(yīng)注意,一個(gè)函數(shù)的解析式由幾部分組成時(shí),定義域?yàn)楦鞑糠钟幸饬x的自變量取值的公共部分(即交集)。

 。3)已知一個(gè)函數(shù)的定義域,求另一個(gè)函數(shù)的定義域,主要考慮定義域的深刻含義即可。

  已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域。

  2、求函數(shù)的解析式一般有四種情況

 。1)根據(jù)某實(shí)際問題需建立一種函數(shù)關(guān)系時(shí),必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)尋求函數(shù)的解析式。

 。2)有時(shí)題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法。比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可。

  (3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法求函數(shù)f(x)的表達(dá)式,這時(shí)必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域。

  (4)若已知f(x)滿足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(—x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式。

  (三)、函數(shù)的值域與最值

  1、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:

 。1)直接法:亦稱觀察法,對(duì)于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域。

 。2)換元法:運(yùn)用代數(shù)式或三角換元將所給的'復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元。

 。3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f—1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得。

 。4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法。

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧。

 。6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。

 。7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域。

 。8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域。

  2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

  求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值。因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異。

  如函數(shù)的值域是(0,16],最大值是16,無最小值。再如函數(shù)的值域是(—∞,—2]∪[2,+∞),但此函數(shù)無最大值和最小值,只有在改變函數(shù)定義域后,如x>0時(shí),函數(shù)的最小值為2?梢姸x域?qū)瘮?shù)的值域或最值的影響。

  3、函數(shù)的最值在實(shí)際問題中的應(yīng)用

  函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識(shí)求解實(shí)際問題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤最大”或“面積(體積)最大(最。钡戎T多現(xiàn)實(shí)問題上,求解時(shí)要特別關(guān)注實(shí)際意義對(duì)自變量的制約,以便能正確求得最值。

 。ㄋ模、函數(shù)的奇偶性

  1、函數(shù)的奇偶性的定義:對(duì)于函數(shù)f(x),如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù))。

  正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恒等式。(奇偶性是函數(shù)定義域上的整體性質(zhì))。

  2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時(shí)需要將函數(shù)化簡或應(yīng)用定義的等價(jià)形式:

  注意如下結(jié)論的運(yùn)用:

  (1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);

  (2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

  (3)奇偶函數(shù)的復(fù)合函數(shù)的奇偶性通常是偶函數(shù);

 。4)奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。

  3、有關(guān)奇偶性的幾個(gè)性質(zhì)及結(jié)論

 。1)一個(gè)函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點(diǎn)對(duì)稱;一個(gè)函數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對(duì)稱。

  (2)如要函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù)。

 。3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立。

  (4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負(fù)對(duì)稱區(qū)間上的單調(diào)性是相同(反)的。

 。5)若f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則F(x)=f(x)+f(—x)是偶函數(shù),G(x)=f(x)—f(—x)是奇函數(shù)。

 。6)奇偶性的推廣

  函數(shù)y=f(x)對(duì)定義域內(nèi)的任一x都有f(a+x)=f(a—x),則y=f(x)的圖象關(guān)于直線x=a對(duì)稱,即y=f(a+x)為偶函數(shù)。函數(shù)y=f(x)對(duì)定義域內(nèi)的任—x都有f(a+x)=—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,0)成中心對(duì)稱圖形,即y=f(a+x)為奇函數(shù)。

 。ㄎ澹、函數(shù)的單調(diào)性

  1、單調(diào)函數(shù)

  對(duì)于函數(shù)f(x)定義在某區(qū)間[a,b]上任意兩點(diǎn)x1,x2,當(dāng)x1>x2時(shí),都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調(diào)遞增(或遞減);增函數(shù)或減函數(shù)統(tǒng)稱為單調(diào)函數(shù)。

  對(duì)于函數(shù)單調(diào)性的定義的理解,要注意以下三點(diǎn):

 。1)單調(diào)性是與“區(qū)間”緊密相關(guān)的概念。一個(gè)函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。

  (2)單調(diào)性是函數(shù)在某一區(qū)間上的“整體”性質(zhì),因此定義中的x1,x2具有任意性,不能用特殊值代替。

  (3)單調(diào)區(qū)間是定義域的子集,討論單調(diào)性必須在定義域范圍內(nèi)。

 。4)注意定義的兩種等價(jià)形式:

  設(shè)x1、x2∈[a,b],那么:

 、僭赱a、b]上是增函數(shù);

  在[a、b]上是減函數(shù)。

  ②在[a、b]上是增函數(shù)。

  在[a、b]上是減函數(shù)。

  需要指出的是:①的幾何意義是:增(減)函數(shù)圖象上任意兩點(diǎn)(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零。

 。5)由于定義都是充要性命題,因此由f(x)是增(減)函數(shù),且(或x1>x2),這說明單調(diào)性使得自變量間的不等關(guān)系和函數(shù)值之間的不等關(guān)系可以“正逆互推”。

  5、復(fù)合函數(shù)y=f[g(x)]的單調(diào)性

  若u=g(x)在區(qū)間[a,b]上的單調(diào)性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調(diào)性相同,則復(fù)合函數(shù)y=f[g(x)]在[a,b]上單調(diào)遞增;否則,單調(diào)遞減。簡稱“同增、異減”。

  在研究函數(shù)的單調(diào)性時(shí),常需要先將函數(shù)化簡,轉(zhuǎn)化為討論一些熟知函數(shù)的單調(diào)性。因此,掌握并熟記一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,將大大縮短我們的判斷過程。

  6、證明函數(shù)的單調(diào)性的方法

 。1)依定義進(jìn)行證明。其步驟為:

 、偃稳1、x2∈M且x1(或<)f(x2);

  ②根據(jù)定義,得出結(jié)論。

 。2)設(shè)函數(shù)y=f(x)在某區(qū)間內(nèi)可導(dǎo)。

  如果f′(x)>0,則f(x)為增函數(shù);如果f′(x)<0,則f(x)為減函數(shù)。

 。⒑瘮(shù)的圖象

  函數(shù)的圖象是函數(shù)的直觀體現(xiàn),應(yīng)加強(qiáng)對(duì)作圖、識(shí)圖、用圖能力的培養(yǎng),培養(yǎng)用數(shù)形結(jié)合的思想方法解決問題的意識(shí)。

  求作圖象的函數(shù)表達(dá)式

  與f(x)的關(guān)系

  由f(x)的圖象需經(jīng)過的變換

  y=f(x)±b(b>0)

  沿y軸向平移b個(gè)單位

  y=f(x±a)(a>0)

  沿x軸向平移a個(gè)單位

  y=—f(x)

  作關(guān)于x軸的對(duì)稱圖形

  y=f(|x|)

  右不動(dòng)、左右關(guān)于y軸對(duì)稱

  y=|f(x)|

  上不動(dòng)、下沿x軸翻折

  y=f—1(x)

  作關(guān)于直線y=x的對(duì)稱圖形

  y=f(ax)(a>0)

  橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變

  y=af(x)

  縱坐標(biāo)伸長到原來的|a|倍,橫坐標(biāo)不變

  y=f(—x)

  作關(guān)于y軸對(duì)稱的圖形

  【例】定義在實(shí)數(shù)集上的函數(shù)f(x),對(duì)任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。

 、偾笞C:f(0)=1;

 、谇笞C:y=f(x)是偶函數(shù);

 、廴舸嬖诔(shù)c,使求證對(duì)任意x∈R,有f(x+c)=—f(x)成立;試問函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個(gè)周期;如果不是,請(qǐng)說明理由。

  思路分析:我們把沒有給出解析式的函數(shù)稱之為抽象函數(shù),解決這類問題一般采用賦值法。

  解答:①令x=y=0,則有2f(0)=2f2(0),因?yàn)閒(0)≠0,所以f(0)=1。

  ②令x=0,則有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),這說明f(x)為偶函數(shù)。

 、鄯謩e用(c>0)替換x、y,有f(x+c)+f(x)=

  所以,所以f(x+c)=—f(x)。

  兩邊應(yīng)用中的結(jié)論,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),所以f(x)是周期函數(shù),2c就是它的一個(gè)周期。

  函數(shù)知識(shí)點(diǎn)總結(jié) 2

  本節(jié)知識(shí)包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱性和函數(shù)的圖象等知識(shí)點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個(gè)知識(shí)點(diǎn),函數(shù)的圖象就迎刃而解了。

  一、函數(shù)的單調(diào)性

  1、函數(shù)單調(diào)性的定義

  2、函數(shù)單調(diào)性的判斷和證明:

  (1)定義法

  (2)復(fù)合函數(shù)分析法

  (3)導(dǎo)數(shù)證明法

  (4)圖象法

  二、函數(shù)的奇偶性和周期性

  1、函數(shù)的奇偶性和周期性的定義

  2、函數(shù)的奇偶性的判定和證明方法

  3、函數(shù)的周期性的判定方法

  三、函數(shù)的圖象

  1、函數(shù)圖象的作法

  (1)描點(diǎn)法

  (2)圖象變換法

  2、圖象變換包括圖象:平移變換、伸縮變換、對(duì)稱變換、翻折變換。

  常見考法

  本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的.每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。

  誤區(qū)提醒

  1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。

  2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點(diǎn)問題。

  3、在多個(gè)單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號(hào)隔開。

  4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,則函數(shù)一定是非奇非偶函數(shù)。

  5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。

  函數(shù)知識(shí)點(diǎn)總結(jié) 3

  誘導(dǎo)公式的本質(zhì)

  所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。

  常用的誘導(dǎo)公式

  公式一: 設(shè)為任意角,終邊相同的'角的同一三角函數(shù)的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

  函數(shù)知識(shí)點(diǎn)總結(jié) 4

  1二次函數(shù)的定義

  一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù).如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函數(shù).

  注意:(1)二次函數(shù)是關(guān)于自變量的二次式,二次項(xiàng)系數(shù)a必須是非零實(shí)數(shù),即a≠0,而b,c是任意實(shí)數(shù),二次函數(shù)的表達(dá)式是一個(gè)整式;

  (2)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),自變量x的取值范圍是全體實(shí)數(shù);

  (3)當(dāng)b=c=0時(shí),二次函數(shù)y=ax2是最簡單的二次函數(shù);

  (4)一個(gè)函數(shù)是否是二次函數(shù),要化簡整理后,對(duì)照定義才能下結(jié)論,例如y=x2-x(x-1)化簡后變?yōu)閥=x,故它不是二次函數(shù).

  2二次函數(shù)解析式的幾種形式

  (1)一般式:y=ax2+bx+c (a,b,c為常數(shù),a≠0).

  (2)頂點(diǎn)式:y=a(x-h)2+k(a,h,k為常數(shù),a≠0).

  (3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點(diǎn)的橫坐標(biāo),即一元二次方程ax2+bx+c=0的`兩個(gè)根,a≠0.

  說明:(1)任何一個(gè)二次函數(shù)通過配方都可以化為頂點(diǎn)式y(tǒng)=a(x-h)2+k,拋物線的頂點(diǎn)坐標(biāo)是(h,k),h=0時(shí),拋物線y=ax2+k的頂點(diǎn)在y軸上;當(dāng)k=0時(shí),拋物線a(x-h)2的頂點(diǎn)在x軸上;當(dāng)h=0且k=0時(shí),拋物線y=ax2的頂點(diǎn)在原點(diǎn)

  3二次函數(shù)y=ax2+c的圖象與性質(zhì)

  (1)拋物線y=ax2+c的形狀由a決定,位置由c決定.

  (2)二次函數(shù)y=ax2+c的圖象是一條拋物線,頂點(diǎn)坐標(biāo)是(0,c),對(duì)稱軸是y軸.

  當(dāng)a>0時(shí),圖象的開口向上,有最低點(diǎn)(即頂點(diǎn)),當(dāng)x=0時(shí),y最小值=c.在y軸左側(cè),y隨x的增大而減小;在y軸右側(cè),y隨x增大而增大.

  當(dāng)a<0時(shí),圖象的開口向下,有最高點(diǎn)(即頂點(diǎn)),當(dāng)x=0時(shí),y最大值=c.在y軸左側(cè),y隨x的增大而增大;在y軸右側(cè),y隨x增大而減小.

  (3)拋物線y=ax2+c與y=ax2的關(guān)系.

  拋物線y=ax2+c與y=ax2形狀相同,只有位置不同.拋物線y=ax2+c可由拋物線y=ax2沿y軸向上或向下平行移動(dòng)|c|個(gè)單位得到.當(dāng)c>0時(shí),向上平行移動(dòng),當(dāng)c<0時(shí),向下平行移動(dòng).

  函數(shù)知識(shí)點(diǎn)總結(jié) 5

  1、變量與常量

  在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

  一般地,在某一變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有確定的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù)。

  2、函數(shù)解析式

  用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

  (1)解析法

  兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。

  (2)列表法

  把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

  (3)圖像法

  用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

  4、由函數(shù)解析式畫其圖像的一般步驟

  (1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值

  (2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

  (3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的.曲線連接起來。

  初中怎樣學(xué)好數(shù)學(xué)

  學(xué)好初中數(shù)學(xué)培養(yǎng)運(yùn)算能力

  初中數(shù)學(xué)涉及到大量的運(yùn)算內(nèi)容,比如有理數(shù)的運(yùn)算、因式分解、根式的運(yùn)算和解方程,這些都是初中數(shù)學(xué)涉及到的知識(shí)內(nèi)容,如果初中生數(shù)學(xué)運(yùn)算能力不過關(guān),那么成績?cè)趺茨芴岣吣?所以運(yùn)算是學(xué)好初中數(shù)學(xué)的基本功,這個(gè)基本功一定要扎實(shí),不然以后的初中數(shù)學(xué)就可以不用學(xué)習(xí)了。

  初中生在解答運(yùn)算題的時(shí)候,不要急躁,靜下心來。初中數(shù)學(xué)運(yùn)算的過程是很重要的,這也是初中生對(duì)于數(shù)學(xué)邏輯和思維的培養(yǎng)過程,結(jié)果要準(zhǔn)確;同時(shí)初中生還有要絕對(duì)的自信,不要求速度可以慢一點(diǎn)的,盡量一次做對(duì)。

  學(xué)好初中數(shù)學(xué)做題的數(shù)量不能少

  不可否認(rèn),想要學(xué)好初中數(shù)學(xué),就要做一定量的數(shù)學(xué)題。不贊同大量的刷題,那樣沒有什么意義。初中生做數(shù)學(xué)題主要是以基礎(chǔ)題的練習(xí)為主,將初中數(shù)學(xué)的基礎(chǔ)題弄懂的同時(shí),反復(fù)的做一些比較典型的題,這樣才是初中生正確的學(xué)習(xí)數(shù)學(xué)方式。

  在初中階段,學(xué)生要鍛煉自己數(shù)學(xué)的抽象思維能力,最好的結(jié)果是在不用書寫的情況下,就能夠得到正確的答案,這也就是我們常說的熟能生巧。同時(shí)也是初中生數(shù)學(xué)基礎(chǔ)知識(shí)牢固的體現(xiàn)。相反的,有的初中生在做練習(xí)題的時(shí)候,比較盲目和急躁,這樣的結(jié)果就是粗心大意,馬虎出錯(cuò)。

  課上重視聽講課下及時(shí)復(fù)習(xí)

  初中生數(shù)學(xué)能力的培養(yǎng)一部分在于平時(shí)做題的過程中,另一部分就在課堂上。所以初中生想要學(xué)好數(shù)學(xué),就要重視課內(nèi)的學(xué)習(xí)效率,在課上的時(shí)候要跟緊老師的思路,大膽的推測老師下一步講課的知識(shí),尤其是基礎(chǔ)知識(shí)的學(xué)習(xí)。在課后初中生還要對(duì)學(xué)習(xí)的數(shù)學(xué)知識(shí)點(diǎn)及時(shí)復(fù)習(xí)。對(duì)于每個(gè)階段初中數(shù)學(xué)的學(xué)習(xí)要進(jìn)行知識(shí)點(diǎn)歸納和整理。

  初中數(shù)學(xué)多項(xiàng)式知識(shí)點(diǎn)

  1、幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。

  2、多項(xiàng)式中的每一個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。

  3、多項(xiàng)式中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。

  4、一個(gè)多項(xiàng)式有幾項(xiàng),就叫做幾項(xiàng)式。

  5、多項(xiàng)式的每一項(xiàng)都包括項(xiàng)前面的符號(hào)。

  6、多項(xiàng)式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。

  7、多項(xiàng)式中次數(shù)的項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。

  函數(shù)知識(shí)點(diǎn)總結(jié) 6

  特別地,二次函數(shù)(以下稱函數(shù))y=ax+bx+c。

  當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax+bx+c=0。

  此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

  1.二次函數(shù)y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。當(dāng)h>0時(shí),y=a(x-h)的圖象可由拋物線y=ax向右平行移動(dòng)h個(gè)單位得到。

  當(dāng)h<0時(shí),則向xxx移動(dòng)|h|個(gè)單位得到。

  當(dāng)h>0,k>0時(shí),將拋物線y=ax向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)+k的圖象。

  當(dāng)h>0,k<0時(shí),將拋物線y=ax向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。

  當(dāng)h<0,k>0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。

  當(dāng)h<0,k<0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。

  因此,研究拋物線y=ax+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。

  2.拋物線y=ax+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b]/4a)。

  3.拋物線y=ax+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小。

  4.拋物線y=ax+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

  (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c)。

  (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x-x|。

  當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0。

  5.拋物線y=ax+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b)/4a。

  頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的`自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值。

  6.用待定系數(shù)法求二次函數(shù)的解析式

  (1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:y=ax+bx+c(a≠0)。

  (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)+k(a≠0)。

  (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a≠0)。

  函數(shù)知識(shí)點(diǎn)總結(jié) 7

  1.常量和變量

  在某變化過程中可以取不同數(shù)值的量,叫做變量.在某變化過程中保持同一數(shù)值的量或數(shù),叫常量或常數(shù).

  2.函數(shù)

  設(shè)在一個(gè)變化過程中有兩個(gè)變量x與y,如果對(duì)于x在某一范圍的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù).

  3.自變量的取值范圍

  (1)整式:自變量取一切實(shí)數(shù).(2)分式:分母不為零.

  (3)偶次方根:被開方數(shù)為非負(fù)數(shù).

  (4)零指數(shù)與負(fù)整數(shù)指數(shù)冪:底數(shù)不為零.

  4.函數(shù)值

  對(duì)于自變量在取值范圍內(nèi)的一個(gè)確定的值,如當(dāng)x=a時(shí),函數(shù)有唯一確定的對(duì)應(yīng)值,這個(gè)對(duì)應(yīng)值,叫做x=a時(shí)的函數(shù)值.

  5.函數(shù)的表示法

  (1)解析法;(2)列表法;(3)圖象法.

  6.函數(shù)的圖象

  把自變量x的一個(gè)值和函數(shù)y的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),可以在平面直角坐標(biāo)系內(nèi)描出一個(gè)點(diǎn),所有這些點(diǎn)的集合,叫做這個(gè)函數(shù)的圖象.由函數(shù)解析式畫函數(shù)圖象的步驟:

  (1)寫出函數(shù)解析式及自變量的取值范圍;

  (2)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值;

  (3)描點(diǎn):以表中對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn);

  (4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點(diǎn)連接起來.

  7.一次函數(shù)

  (1)一次函數(shù)

  如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù).

  特別地,當(dāng)b=0時(shí),一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時(shí),y叫做x的正比例函數(shù).

  (2)一次函數(shù)的圖象

  一次函數(shù)y=kx+b的圖象是一條經(jīng)過(0,b)點(diǎn)和點(diǎn)的直線.特別地,正比例函數(shù)圖象是一條經(jīng)過原點(diǎn)的直線.需要說明的是,在平面直角坐標(biāo)系中,“直線”并不等價(jià)于“一次函數(shù)y=kx+b(k≠0)的圖象”,因?yàn)檫有直線y=m(此時(shí)k=0)和直線x=n(此時(shí)k不存在),它們不是一次函數(shù)圖象.

  (3)一次函數(shù)的性質(zhì)

  當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小.直線y=kx+b與y軸的交點(diǎn)坐標(biāo)為(0,b),與x軸的交點(diǎn)坐標(biāo)為.

  (4)用函數(shù)觀點(diǎn)看方程(組)與不等式

 、偃魏我辉淮畏匠潭伎梢赞D(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:一次函數(shù)y=kx+b(k,b為常數(shù),k≠0),當(dāng)y=0時(shí),求相應(yīng)的自變量的值,從圖象上看,相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo).

 、诙淮畏匠探M對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線,從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)值相等,以及這兩個(gè)函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線的交點(diǎn)的坐標(biāo).

 、廴魏我辉淮尾坏仁蕉伎梢赞D(zhuǎn)化ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,解一元一次不等式可以看做:當(dāng)一次函數(shù)值大于0或小于0時(shí),求自變量相應(yīng)的取值范圍.

  8.反比例函數(shù)(1)反比例函數(shù)

 。1)如果(k是常數(shù),k≠0),那么y叫做x的反比例函數(shù).

  (2)反比例函數(shù)的圖象反比例函數(shù)的圖象是雙曲線.

  (3)反比例函數(shù)的性質(zhì)

 、佼(dāng)k>0時(shí),圖象的兩個(gè)分支分別在第一、三象限內(nèi),在各自的象限內(nèi),y隨x的增大而減小.

 、诋(dāng)k<0時(shí),圖象的兩個(gè)分支分別在第二、四象限內(nèi),在各自的象限內(nèi),y隨x的增大而增大.

 、鄯幢壤瘮(shù)圖象關(guān)于直線y=±x對(duì)稱,關(guān)于原點(diǎn)對(duì)稱.

  (4)k的兩種求法

 、偃酎c(diǎn)(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:

  若雙曲線上任一點(diǎn)A(x,y),AB⊥x軸于B,則S△AOB

  (5)正比例函數(shù)和反比例函數(shù)的交點(diǎn)問題

  若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù),則當(dāng)k1k2<0時(shí),兩函數(shù)圖象無交點(diǎn);

  當(dāng)k1k2>0時(shí),兩函數(shù)圖象有兩個(gè)交點(diǎn),坐標(biāo)分別為由此可知,正反比例函數(shù)的圖象若有交點(diǎn),兩交點(diǎn)一定關(guān)于原點(diǎn)對(duì)稱.

  1.二次函數(shù)

  如果y=ax2+bx+c(a,b,c為常數(shù),a≠0),那么y叫做x的二次函數(shù).

  幾種特殊的二次函數(shù):y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).

  2.二次函數(shù)的圖象

  二次函數(shù)y=ax2+bx+c的圖象是對(duì)稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的.圖象.

  3.二次函數(shù)的性質(zhì)

  二次函數(shù)y=ax2+bx+c的性質(zhì)對(duì)應(yīng)在它的圖象上,有如下性質(zhì):

  (1)拋物線y=ax2+bx+c的頂點(diǎn)是,對(duì)稱軸是直線,頂點(diǎn)必在對(duì)稱軸上;

  (2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對(duì)于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<時(shí),y隨x的增大而減小;當(dāng)x>時(shí),y隨x的增大而增大;當(dāng)x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開口向下,因此,對(duì)于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<,y隨x的增大而增大;當(dāng)時(shí),y隨x的增大而減;當(dāng)x=時(shí),y有最大值;

  (3)拋物線y=ax2+bx+c與y軸的交點(diǎn)為(0,c);

  (4)在二次函數(shù)y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點(diǎn)的情況:

 。0時(shí),拋物線y=ax2+bx+c與x軸沒有公共點(diǎn).=0時(shí),拋物線y=ax2+bx+c與x軸只有一個(gè)公共點(diǎn),即為此拋物線的頂點(diǎn);當(dāng)=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個(gè)不同的公共點(diǎn),它們的坐標(biāo)分別是和,這兩點(diǎn)的距離為;當(dāng)當(dāng)4.拋物線的平移

  拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據(jù)h、k的值來決定.

  函數(shù)知識(shí)點(diǎn)總結(jié) 8

  一、函數(shù)的概念與表示

  1、映射

  (1)映射:設(shè)A、B是兩個(gè)集合,如果按照某種映射法則f,對(duì)于集合A中的任一個(gè)元素,在集合B中都有唯一的元素和它對(duì)應(yīng),則這樣的對(duì)應(yīng)(包括集合A、B以及A到B的對(duì)應(yīng)法則f)叫做集合A到集合B的映射,記作f:A→B。

  注意點(diǎn):(1)對(duì)映射定義的理解。(2)判斷一個(gè)對(duì)應(yīng)是映射的方法。一對(duì)多不是映射,多對(duì)一是映射

  2、函數(shù)

  構(gòu)成函數(shù)概念的三要素

  ①定義域②對(duì)應(yīng)法則③值域

  兩個(gè)函數(shù)是同一個(gè)函數(shù)的條件:三要素有兩個(gè)相同

  二、函數(shù)的解析式與定義域

  1、求函數(shù)定義域的主要依據(jù):

  (1)分式的分母不為零;

  (2)偶次方根的被開方數(shù)不小于零,零取零次方?jīng)]有意義;

  (3)對(duì)數(shù)函數(shù)的真數(shù)必須大于零;

  (4)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

  三、函數(shù)的值域

  1求函數(shù)值域的方法

 、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡單的復(fù)合函數(shù);

 、趽Q元法:利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;

 、叟袆e式法:運(yùn)用方程思想,依據(jù)二次方程有根,求出y的'取值范圍;適合分母為二次且∈R的分式;

 、芊蛛x常數(shù):適合分子分母皆為一次式(x有范圍限制時(shí)要畫圖);

  ⑤單調(diào)性法:利用函數(shù)的單調(diào)性求值域;

 、迗D象法:二次函數(shù)必畫草圖求其值域;

 、呃脤(duì)號(hào)函數(shù)

 、鄮缀我饬x法:由數(shù)形結(jié)合,轉(zhuǎn)化距離等求值域。主要是含絕對(duì)值函數(shù)

  四.函數(shù)的奇偶性

  1.定義:設(shè)y=f(x),x∈A,如果對(duì)于任意∈A,都有,則稱y=f(x)為偶函數(shù)。

  如果對(duì)于任意∈A,都有,則稱y=f(x)為奇

  函數(shù)。

  2.性質(zhì):

 、賧=f(x)是偶函數(shù)y=f(x)的圖象關(guān)于軸對(duì)稱,y=f(x)是奇函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,

  ②若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(0)=0

 、燮妗榔=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關(guān)于原點(diǎn)對(duì)稱]

  3.奇偶性的判斷

 、倏炊x域是否關(guān)于原點(diǎn)對(duì)稱②看f(x)與f(-x)的關(guān)系

  五、函數(shù)的單調(diào)性

  1、函數(shù)單調(diào)性的定義:

  2設(shè)是定義在M上的函數(shù),若f(x)與g(x)的單調(diào)性相反,則在M上是減函數(shù);若f(x)與g(x)的單調(diào)性相同,則在M上是增函數(shù)。

  函數(shù)知識(shí)點(diǎn)總結(jié) 9

  一次函數(shù)的定義

  一般地,形如y=kx+b(k,b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù),其中x是自變量。當(dāng)b=0時(shí),一次函數(shù)y=kx,又叫做正比例函數(shù)。

  1、一次函數(shù)的解析式的形式是y=kx+b,要判斷一個(gè)函數(shù)是否是一次函數(shù),就是判斷是否能化成以上形式。

  2、當(dāng)b=0,k≠0時(shí),y=kx仍是一次函數(shù)。

  3、當(dāng)k=0,b≠0時(shí),它不是一次函數(shù)。

  4、正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)包括正比例函數(shù)。

  一次函數(shù)的圖像及性質(zhì)

  1、在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

  2、一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(—b/k,0)。

  3、正比例函數(shù)的圖像總是過原點(diǎn)。

  4、k,b與函數(shù)圖像所在象限的關(guān)系:

  當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。

  當(dāng)k>0,b>0時(shí),直線通過一、二、三象限;

  當(dāng)k>0,b<0時(shí),直線通過一、三、四象限;

  當(dāng)k<0,b>0時(shí),直線通過一、二、四象限;

  當(dāng)k<0,b<0時(shí),直線通過二、三、四象限;

  當(dāng)b=0時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

  這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。

  一次函數(shù)的圖象與性質(zhì)的口訣

  一次函數(shù)是直線,圖象經(jīng)過三象限;

  正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;

  兩個(gè)系數(shù)k與b,作用之大莫小看,

  k是斜率定夾角,b與y軸來相見,

  k為正來右上斜,x增減y增減;

  k為負(fù)來左下展,變化規(guī)律正相反;

  k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。

  拓展閱讀:一次函數(shù)的解題方法

  理解一次函數(shù)和其它知識(shí)的聯(lián)系

  一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時(shí),等號(hào)的'兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個(gè)變量,而代數(shù)式可以是多個(gè)變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。

  掌握一次函數(shù)的解析式的特征

  一次函數(shù)解析式的結(jié)構(gòu)特征:kx+b是關(guān)于x的一次二項(xiàng)式,其中常數(shù)b可以是任意實(shí)數(shù),一次項(xiàng)系數(shù)k必須是非零數(shù),k≠0,因?yàn)楫?dāng)k = 0時(shí),y = b(b是常數(shù)),由于沒有一次項(xiàng),這樣的函數(shù)不是一次函數(shù);而當(dāng)b = 0,k≠0,y = kx既是正比例函數(shù),也是一次函數(shù)。

  應(yīng)用一次函數(shù)解決實(shí)際問題

  1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關(guān)聯(lián)的量,且其中一種量因另一種量的變化而變化;

  2、找出具有相關(guān)聯(lián)的兩種量的等量關(guān)系之后,明確哪種量是另一種量的函數(shù);

  3、在實(shí)際問題中,一般存在著三種量,如距離、時(shí)間、速度等等,在這三種量中,當(dāng)且僅當(dāng)其中一種量時(shí)間(或速度)不變時(shí),距離與速度(或時(shí)間)才成正比例,也就是說,距離(s)是時(shí)間(t)或速度( )的正比例函數(shù);

  4、求一次函數(shù)與正比例函數(shù)的關(guān)系式,一般采取待定系數(shù)法。

  數(shù)形結(jié)合

  方程,不等式,不等式組,方程組我們都可以用一次函數(shù)的觀點(diǎn)來理解。一元一次不等式實(shí)際上就看兩條直線上下方的關(guān)系,求出端點(diǎn)后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來認(rèn)識(shí),直線交點(diǎn)的橫坐標(biāo)就是方程的解,至于二元一次方程組就是對(duì)應(yīng)2條直線,方程組的解就是直線的交點(diǎn),結(jié)合圖形可以認(rèn)識(shí)兩直線的位置關(guān)系也可以把握交點(diǎn)個(gè)數(shù)。

  如果一個(gè)交點(diǎn)時(shí)候兩條直線的k不同,如果無窮個(gè)交點(diǎn)就是k,b都一樣,如果平行無交點(diǎn)就是k相同,b不一樣。至于函數(shù)平移的問題可以化歸為對(duì)應(yīng)點(diǎn)平移。k反正不變?nèi)缓笥么ㄏ禂?shù)法得到平移后的方程。這就是化一般為特殊的解題方法。

  函數(shù)知識(shí)點(diǎn)總結(jié) 10

  f(x2),那么那么y=f(x)在區(qū)間D上是減函數(shù),D是函數(shù)y=f(x)的單調(diào)遞減區(qū)間。

 、藕瘮(shù)區(qū)間單調(diào)性的判斷思路

 、≡诮o出區(qū)間內(nèi)任取x1、x2,則x1、x2∈D,且x1

  ⅱ做差值f(x1)-f(x2),并進(jìn)行變形和配方,變?yōu)橐子谂袛嗾?fù)的形式。

 、E袛嘧冃魏蟮谋磉_(dá)式f(x1)-f(x2)的符號(hào),指出單調(diào)性。

 、茝(fù)合函數(shù)的單調(diào)性

  復(fù)合函數(shù)y=f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律為“同增異減”;多個(gè)函數(shù)的復(fù)合函數(shù),根據(jù)原則“減偶則增,減奇則減”。

  ⑶注意事項(xiàng)

  函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成并集,如果函數(shù)在區(qū)間A和B上都遞增,則表示為f(x)的單調(diào)遞增區(qū)間為A和B,不能表示為A∪B。

  2、函數(shù)的整體性質(zhì)——奇偶性

  對(duì)于函數(shù)f(x)定義域內(nèi)的任意一個(gè)x,都有f(x) =f(-x),則f(x)就為偶函數(shù);

  對(duì)于函數(shù)f(x)定義域內(nèi)的任意一個(gè)x,都有f(x) =-f(x),則f(x)就為奇函數(shù)。

  小編推薦:高中數(shù)學(xué)必考知識(shí)點(diǎn)歸納總結(jié)

 、牌婧瘮(shù)和偶函數(shù)的性質(zhì)

 、o論函數(shù)是奇函數(shù)還是偶函數(shù),只要函數(shù)具有奇偶性,該函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱。

 、⑵婧瘮(shù)的圖像關(guān)于原點(diǎn)對(duì)稱,偶函數(shù)的圖像關(guān)于y軸對(duì)稱。

  ⑵函數(shù)奇偶性判斷思路

 、∠却_定函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不關(guān)于原點(diǎn)對(duì)稱,則為非奇非偶函數(shù)。

 、⒋_定f(x)和f(-x)的關(guān)系:

  若f(x) -f(-x)=0,或f(x) /f(-x)=1,則函數(shù)為偶函數(shù);

  若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,則函數(shù)為奇函數(shù)。

  3、函數(shù)的最值問題

  ⑴對(duì)于二次函數(shù),利用配方法,將函數(shù)化為y=(x-a)2+b的形式,得出函數(shù)的最大值或最小值。

 、茖(duì)于易于畫出函數(shù)圖像的函數(shù),畫出圖像,從圖像中觀察最值。

 、顷P(guān)于二次函數(shù)在閉區(qū)間的'最值問題

 、∨袛喽魏瘮(shù)的頂點(diǎn)是否在所求區(qū)間內(nèi),若在區(qū)間內(nèi),則接ⅱ,若不在區(qū)間內(nèi),則接ⅲ。

 、⑷舳魏瘮(shù)的頂點(diǎn)在所求區(qū)間內(nèi),則在二次函數(shù)y=ax2+bx+c中,a>0時(shí),頂點(diǎn)為最小值,a0時(shí)的最大值或a

  ⅲ若二次函數(shù)的頂點(diǎn)不在所求區(qū)間內(nèi),則判斷函數(shù)在該區(qū)間的單調(diào)性

  若函數(shù)在[a,b]上遞增,則最小值為f(a),最大值為f(b);

  若函數(shù)在[a,b]上遞減,則最小值為f(b),最大值為f(a)。

  3高一數(shù)學(xué)基本初等函數(shù)1、指數(shù)函數(shù):函數(shù)y=ax (a>0且a≠1)叫做指數(shù)函數(shù)

  a的取值a>1 0

  注意:⑴由函數(shù)的單調(diào)性可以看出,在閉區(qū)間[a,b]上,指數(shù)函數(shù)的最值為:

  a>1時(shí),最小值f(a),最大值f(b);0

 、茖(duì)于任意指數(shù)函數(shù)y=ax (a>0且a≠1),都有f(1)=a。

  2、對(duì)數(shù)函數(shù):函數(shù)y=logax(a>0且a≠1)),叫做對(duì)數(shù)函數(shù)

  a的取值a>1 0

  3、冪函數(shù):函數(shù)y=xa(a∈R),高中階段,冪函數(shù)只研究第I象限的情況。

 、潘袃绾瘮(shù)都在(0,+∞)區(qū)間內(nèi)有定義,而且過定點(diǎn)(1,1)。

 、芶>0時(shí),冪函數(shù)圖像過原點(diǎn),且在(0,+∞)區(qū)間為增函數(shù),a越大,圖像坡度越大。

 、莂

  當(dāng)x從右側(cè)無限接近原點(diǎn)時(shí),圖像無限接近y軸正半軸;

  當(dāng)y無限接近正無窮時(shí),圖像無限接近x軸正半軸。

  冪函數(shù)總圖見下頁。

  4、反函數(shù):將原函數(shù)y=f(x)的x和y互換即得其反函數(shù)x=f-1(y)。

  反函數(shù)圖像與原函數(shù)圖像關(guān)于直線y=x對(duì)稱。

  函數(shù)知識(shí)點(diǎn)總結(jié) 11

  余割函數(shù)

  對(duì)于任意一個(gè)實(shí)數(shù)x,都對(duì)應(yīng)著唯一的'角(弧度制中等于這個(gè)實(shí)數(shù)),而這個(gè)角又對(duì)應(yīng)著唯一確定的余割值cscx與它對(duì)應(yīng),按照這個(gè)對(duì)應(yīng)法則建立的函數(shù)稱為余割函數(shù)。

  記作f(x)=cscx

  f(x)=cscx=1/sinx

  1、定義域:{x|x≠kπ,k∈Z}

  2、值域:{y|y≤-1或y≥1}

  3、奇偶性:奇函數(shù)

  4、周期性:最小正周期為2π

  5、圖像:

  圖像漸近線為:x=kπ ,k∈Z

  其實(shí)有一點(diǎn)需要注意,就是余割函數(shù)與正弦函數(shù)互為倒數(shù)。

【函數(shù)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

函數(shù)知識(shí)點(diǎn)總結(jié)02-10

函數(shù)知識(shí)點(diǎn)總結(jié)06-23

函數(shù)知識(shí)點(diǎn)總結(jié)(熱門)09-19

函數(shù)知識(shí)點(diǎn)總結(jié)(實(shí)用)09-20

【優(yōu)秀】函數(shù)知識(shí)點(diǎn)總結(jié)09-20

函數(shù)知識(shí)點(diǎn)總結(jié)【熱門】08-21

函數(shù)知識(shí)點(diǎn)總結(jié)(精)08-21

(精品)函數(shù)知識(shí)點(diǎn)總結(jié)08-22

[集合]函數(shù)知識(shí)點(diǎn)總結(jié)09-19

(實(shí)用)函數(shù)知識(shí)點(diǎn)總結(jié)09-21