初一學生如何學好數(shù)學幾何
學習方法是通過學習實踐總結出的快速掌握知識的方法。因其與學習掌握知識的效率有關,越來越受到人們的重視。下面和小編一起來看初一學生如何學好數(shù)學幾何,希望有所幫助!
一、幾何是怎樣的重要?
每年中考落幕后老師和學生談論最多的就是當年中考數(shù)學幾何的難易程度,從某種意義上來說中考數(shù)學中幾何做的如何直接決定了中考數(shù)學是否能夠拿到高分,是否能夠拉開分數(shù)差距。中考數(shù)學中的幾何,是如何考察的呢?
以北京中考數(shù)學為例,中考第23題中一般考查幾何輔助線思維能力鍛煉,考查學生空間想象能力以及動手操作能力;第24題,一般考查二次函數(shù)與四邊形、三角形乃至于圓的綜合,題目難度系數(shù)較大,是每一屆中考考生的絆腳石之一;第25題,一般考查幾何綜合變換,常常和幾何中的幾何變換之旋轉、平移、軸對稱。這三大變換足以讓很多學生扣分,如2010年、2012年北京中考25題考查幾何軸對稱導致當年滿分和高分分數(shù)劇降!
可以肯定地說,數(shù)學中幾何對于初三學生的非常重要,對中考數(shù)學來說非常重要。得幾何者得中考數(shù)學天下!
幾何如此重要,然而由于初三時間緊任務重,幾何有漏洞的同學很難集中時間、精力專解決幾何問題,包括學得很好的同學一段時間不在學習幾何,重要模型、方法或者是輔助線都會遺忘、不熟練,導致考試中失分。
二、幾何如此重要,怎么學?
面對幾何的重要性,在剛進入初三的孩子們來說,需要注意如下幾點:
1、重視新課中的基礎。在學校學習新課的時候就一定要打扎實基礎,把每一個基礎的知識點弄清楚。把每一個定理和定理的證明方法弄明白,從而聯(lián)想到相關的知識點。上課勤做筆記,記住每一個閃光的思路。
2、注重歸納。把自己在課本輔導書上做到的相關的題型總結在一起,經(jīng);仡櫍瑫r標記重要題型。
3、保持四邊形、三角形中輔助線添加熟練。特別是幾何三大變換,旋轉、平移、軸對稱要熟練,多練習這類型的題目。
4、熟練掌握初中階段數(shù)學模型。掌握模型,熟練運用解題技巧。
5、必要的時候進行幾何壓軸題的專項突破,解決問題。
初一學生如何學好數(shù)學幾何
1、培養(yǎng)學生學習幾何的興趣。興趣是孩子學習的原動力,教師要采用科學合理的教學方法,運用多媒體技術,進行直觀教學,設置教學情境,引導學生多動手多動腦多觀察,培養(yǎng)學生空間想象能力,培養(yǎng)學生對圖形圖像的感知能力,培養(yǎng)孩子學習幾何的興趣。
2、注重幾何概念的教學。讓學生重視幾何概念,才可能學好幾何。幾何概念以理解為主,切忌死記硬背,對幾何概念能從圖中反應出來,能把幾何概念用圖形表現(xiàn)出來。
3、教師要引導學生獨立思考的能力,掌握學習幾何的方法及幾何的特點。教師講解板書時幾何語言要精練規(guī)范,推理邏輯要嚴密,注意條件與結論之間的因果關系,注重數(shù)與形的結合,數(shù)與形的聯(lián)系。
4、要求學生規(guī)范運用幾何語言。幾何語言是以符號為主的語言。讓學生從思想上重視對運用幾何語言的運用,明確幾何符號的意義特點及書寫。
5、教師要規(guī)范學生的書寫,循序漸進,嚴格要求。
6、在講解邏輯推理時,對邏輯三段論應講清楚透切。在板書時要一絲不茍,多演示,讓學生一步一步比照做,學會推理的要求格式步驟。
對學生初學幾何,要注意教學的方法,教學的進度,教學的要求。教師要有耐心,只要做好起步階段的工作,讓初一的學生以后對幾何學習就變得輕松有趣。
初中數(shù)學幾何知識點總結
三角形的知識點
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三角形的分類
3、三角形的三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
6、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的`角平分線。
7、高線、中線、角平分線的意義和做法
8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩(wěn)定性。
9、三角形內角和定理:三角形三個內角的和等于180°
推論1直角三角形的兩個銳角互余
推論2三角形的一個外角等于和它不相鄰的兩個內角和
推論3三角形的一個外角大于任何一個和它不相鄰的內角;三角形的內角和是外角和的一半
10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。
11、三角形外角的性質
(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;
(2)三角形的一個外角等于與它不相鄰的兩個內角和;
(3)三角形的一個外角大于與它不相鄰的任一內角;
(4)三角形的外角和是360°。
四邊形(含多邊形)知識點、概念總結
一、平行四邊形的定義、性質及判定
1、兩組對邊平行的四邊形是平行四邊形。
2、性質:
(1)平行四邊形的對邊相等且平行
(2)平行四邊形的對角相等,鄰角互補
(3)平行四邊形的對角線互相平分
3、判定:
(1)兩組對邊分別平行的四邊形是平行四邊形
(2)兩組對邊分別相等的四邊形是平行四邊形
(3)一組對邊平行且相等的四邊形是平行四邊形
(4)兩組對角分別相等的四邊形是平行四邊形
(5)對角線互相平分的四邊形是平行四邊形
4、對稱性:平行四邊形是中心對稱圖形
二、矩形的定義、性質及判定
1、定義:有一個角是直角的平行四邊形叫做矩形
2、性質:矩形的四個角都是直角,矩形的對角線相等
3、判定:
(1)有一個角是直角的平行四邊形叫做矩形
(2)有三個角是直角的四邊形是矩形
(3)兩條對角線相等的平行四邊形是矩形
4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。
三、菱形的定義、性質及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的對角線互相垂直,并且每一條對角線平分一組對角
(3)菱形被兩條對角線分成四個全等的直角三角形
(4)菱形的面積等于兩條對角線長的積的一半
2、s菱=爭6(n、6分別為對角線長)
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對角線互相垂直的平行四邊形是菱形
4、對稱性:菱形是軸對稱圖形也是中心對稱圖形
四、正方形定義、性質及判定
1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形
2、性質:
(1)正方形四個角都是直角,四條邊都相等
(2)正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
(3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形
(4)正方形的對角線與邊的夾角是45°
(5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形
3、判定:
(1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個四邊形是菱形,再判定出有一個角是直角
4、對稱性:正方形是軸對稱圖形也是中心對稱圖形
五、梯形的定義、等腰梯形的性質及判定
1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性質:等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等
3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形
4、對稱性:等腰梯形是軸對稱圖形
六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。
七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。
八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。
九、多邊形
1、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
2、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
4、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。
6、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。
7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
8、公式與性質
多邊形內角和公式:n邊形的內角和等于(n-2)·180°
9、多邊形外角和定理:
(1)n邊形外角和等于n·180°-(n-2)·180°=360°
(2)邊形的每個內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等于n·180°
10、多邊形對角線的條數(shù):
(1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形
(2)n邊形共有n(n-3)/2條對角線
圓知識點、概念總結
1、不在同一直線上的三點確定一個圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對稱中心的中心對稱圖形
4、圓是定點的距離等于定長的點的集合
5、圓的內部可以看作是圓心的距離小于半徑的點的集合
6、圓的外部可以看作是圓心的距離大于半徑的點的集合
7、同圓或等圓的半徑相等
8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11、定理:圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角
12、①直線L和⊙O相交d
、谥本L和⊙O相切d=r
③直線L和⊙O相離d>r
13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14、切線的性質定理:圓的切線垂直于經(jīng)過切點的半徑
15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對邊的和相等,外角等于內對角
19、如果兩個圓相切,那么切點一定在連心線上
20、①兩圓外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R-rr)
、軆蓤A內切d=R-r(R>r)⑤兩圓內含dr)
21、定理:相交兩圓的連心線垂直平分兩圓的公共弦
22、定理:把圓分成n(n≥3):
(1)依次連結各分點所得的多邊形是這個圓的內接正n邊形
(2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23、定理:任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
24、正n邊形的每個內角都等于(n-2)×180°/n
25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長
27、正三角形面積√3a/4a表示邊長
28、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29、弧長計算公式:L=n兀R/180
30、扇形面積公式:S扇形=n兀R^2/360=LR/2
31、內公切線長=d-(R-r)外公切線長=d-(R+r)
32、定理:一條弧所對的圓周角等于它所對的圓心角的一半
33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
35、弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
【初一學生如何學好數(shù)學幾何】相關文章:
如何學好初中數(shù)學證明03-19
如何學好初三數(shù)學11-25
如何學好初一數(shù)學12-16
如何學好小學數(shù)學的方法11-27
幾何是如何發(fā)明的11-11
如何學好數(shù)學 什么方法最好08-23
如何學好高中數(shù)學11-24
怎樣學好平面幾何證明論文06-12