毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

高中數(shù)學重點公式總結分享

時間:2021-10-08 11:32:31 總結 我要投稿

高中數(shù)學重點公式總結分享

  總結是事后對某一時期、某一項目或某些工作進行回顧和分析,從而做出帶有規(guī)律性的結論,它可以有效鍛煉我們的語言組織能力,我想我們需要寫一份總結了吧。總結怎么寫才能發(fā)揮它的作用呢?以下是小編整理的高中數(shù)學重點公式總結分享,歡迎大家借鑒與參考,希望對大家有所幫助。

高中數(shù)學重點公式總結分享

  圓的公式

  1、圓體積=4/3(pi)(r^3)

  2、面積=(pi)(r^2)

  3、周長=2(pi)r

  4、圓的標準方程(x-a)2+(y-b)2=r2【(a,b)是圓心坐標】

  5、圓的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】

  橢圓公式

  1、橢圓周長公式:l=2πb+4(a-b)

  2、橢圓周長定理:橢圓的周長等于該橢圓短半軸,長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差.

  3、橢圓面積公式:s=πab

  4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

  以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率t,但這兩個公式都是通過橢圓周率t推導演變而來。

  兩角和公式

  1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa

  2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb

  3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

  4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

  倍角公式

  1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

  2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)

  2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)

  3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))

  4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))

  和差化積

  1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)

  2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)

  3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

  4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb

  5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb

  拋物線

  1、拋物線:y=ax_+bx+c就是y等于ax的平方加上bx再加上c。

  a>0時,拋物線開口向上;a<0時拋物線開口向下;c=0時拋物線經(jīng)過原點;b=0時拋物線對稱軸為y軸。

  2、頂點式y(tǒng)=a(x+h)_+k就是y等于a乘以(x+h)的平方+k,-h是頂點坐標的x,k是頂點坐標的y,一般用于求最大值與最小值。

  3、拋物線標準方程:y^2=2px它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0)。

  4、準線方程為x=-p/2由于拋物線的焦點可在任意半軸,故共有標準方程:y^2=2pxy^2=-2p_^2=2pyx^2=-2py。

  正余弦定理

  正弦定理:a/sinA=b/sinB=c/sinC=2R R為三角形外接圓的半徑

  余弦定理:a2=b2+c2-2bc_cosA

  誘導公式

  一:設α為任意角,終邊相同的`角的同一三角函數(shù)的值相等:

  sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)

  二:設α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關系:

  sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

  三:任意角α與-α的三角函數(shù)值之間的關系:

  sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

  四:利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關系:

  sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

  五:利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關系:

  sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

  常用的初等函數(shù):

  (1)一元一次函數(shù):

  (2)一元二次函數(shù):

  一般式

  兩點式

  頂點式

  二次函數(shù)求最值問題:首先要采用配方法,化為一般式,

  有三個類型題型:

  (1)頂點固定,區(qū)間也固定。如:

  (2)頂點含參數(shù)(即頂點變動),區(qū)間固定,這時要討論頂點橫坐標何時在區(qū)間之內(nèi),何時在區(qū)間之外。

  (3)頂點固定,區(qū)間變動,這時要討論區(qū)間中的參數(shù).

  等價命題在區(qū)間上有兩根在區(qū)間上有兩根在區(qū)間或上有一根

  注意:若在閉區(qū)間討論方程有實數(shù)解的情況,可先利用在開區(qū)間上實根分布的情況,得出結果,在令和檢查端點的情況。

  (3)反比例函數(shù):

  (4)指數(shù)函數(shù):

  指數(shù)函數(shù):y=(a>o,a≠1),圖象恒過點(0,1),單調(diào)性與a的值有關,在解題中,往往要對a分a>1和0

  (5)對數(shù)函數(shù):

  對數(shù)函數(shù):y=(a>o,a≠1)圖象恒過點(1,0),單調(diào)性與a的值有關,在解題中,往往要對a分a>1和0

  注意:

  (1)比較兩個指數(shù)或?qū)?shù)的大小的基本方法是構造相應的指數(shù)或?qū)?shù)函數(shù),若底數(shù)不相同時轉(zhuǎn)化為同底數(shù)的指數(shù)或?qū)?shù),還要注意與1比較或與0比較。

【高中數(shù)學重點公式總結分享】相關文章:

高中數(shù)學復數(shù)運算公式有哪些10-12

服裝銷售總結分享01-11

液體壓強公式10-12

勵志公式推薦07-29

電場強度公式10-12

導數(shù)切線斜率公式10-11

關于勵志的公式07-30

沖量公式是什么與動量的關系公式有哪些10-12

高中數(shù)學返崗實踐總結06-05

高中數(shù)學教師學習總結01-13