高中高考數(shù)學知識點最新精選總結(jié)
總結(jié)是對取得的成績、存在的問題及得到的經(jīng)驗和教訓等方面情況進行評價與描述的一種書面材料,它能夠使頭腦更加清醒,目標更加明確,讓我們一起認真地寫一份總結(jié)吧。那么如何把總結(jié)寫出新花樣呢?以下是小編為大家整理的高中高考數(shù)學知識點最新精選總結(jié),歡迎大家借鑒與參考,希望對大家有所幫助。
高中高考數(shù)學知識點最新精選總結(jié)1
空間幾何。三視圖和直觀圖的繪制不算難。但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物。這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結(jié)合起來看,先熟練地正推,再慢慢的逆推。有必要的還要在做題時結(jié)合草圖,不能單憑想象。后面的錐體柱體臺體的表面積和體積,把公式記牢問題就不大。做題表求表面積時注意好到底有幾個面,到底有沒有上下底這類問題就可以。
點、直線、平面之間的位置關(guān)系。這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生要多看圖,自己畫草圖的時候要嚴格注意好實線虛線,這是個規(guī)范性問題。關(guān)于這一章的內(nèi)容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質(zhì),同時能用圖形語言、文字語言、數(shù)學表達式表示出來。只要這些全部過關(guān)這一章就解決了一大半。這一章的難點在于二面角這個概念,難度在于對這個概念無法理解,即知道有這個概念,但就是無法在二面里面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什么捷徑可走。
直線與方程。這一章主要講斜率與直線的位置關(guān)系。只要搞清楚直線平行、垂直的斜率表示問題就不大了。需要格外注意的是當直線垂直時斜率不存在的情況,這是?键c。另外直線方程的幾種形式,記得一般公式會用就行,要求不高。點與點的距離、點與直線的距離、直線與直線的距離,記住公式,直接套用。
圓與方程。能熟練的把一般式方程轉(zhuǎn)化為標準方程,通常的考試形式是等式的一遍含根號,另一邊不含,這時就要注意開方后定義域或值域的限制;通過點到點的距離、點到直線的距離與圓半徑的大小關(guān)系判斷點與圓、直線與圓、圓與圓的位置關(guān)系。另外注意圓的對稱性引起的相切、相交直線的多種情況,這也是?键c。
高中高考數(shù)學知識點最新精選總結(jié)2
向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個次序構(gòu)成右手系。若a、b共線,則a×b=0。
向量的向量積性質(zhì):
∣a×b∣是以a和b為邊的平行四邊形面積。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量積運算律
a×b=—b×a;
。é薬)×b=λ(a×b)=a×(λb);
。╝+b)×c=a×c+b×c。
注:向量沒有除法,“向量AB/向量CD”是沒有意義的。
高中高考數(shù)學知識點最新精選總結(jié)3
一、充分條件和必要條件
當命題“若A則B”為真時,A稱為B的充分條件,B稱為A的必要條件。
二、充分條件、必要條件的常用判斷法
1、定義法:判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可
2、轉(zhuǎn)換法:當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。
3、集合法
在命題的條件和結(jié)論間的關(guān)系判斷有困難時,可從集合的角度考慮,記條件p、q對應的集合分別為A、B,則:
若A?B,則p是q的充分條件。
若A?B,則p是q的必要條件。
若A=B,則p是q的充要條件。
若A?B,且B?A,則p是q的既不充分也不必要條件。
三、知識擴展
1、四種命題反映出命題之間的內(nèi)在聯(lián)系,要注意結(jié)合實際問題,理解其關(guān)系(尤其是兩種等價關(guān)系)的產(chǎn)生過程,關(guān)于逆命題、否命題與逆否命題,也可以敘述為:
(1)交換命題的條件和結(jié)論,所得的新命題就是原來命題的逆命題;
。2)同時否定命題的條件和結(jié)論,所得的新命題就是原來的否命題;
(3)交換命題的條件和結(jié)論,并且同時否定,所得的新命題就是原命題的逆否命題。
2、由于“充分條件與必要條件”是四種命題的關(guān)系的深化,他們之間存在這密切的聯(lián)系,故在判斷命題的條件的充要性時,可考慮“正難則反”的原則,即在正面判斷較難時,可轉(zhuǎn)化為應用該命題的逆否命題進行判斷。一個結(jié)論成立的充分條件可以不止一個,必要條件也可以不止一個。
高中高考數(shù)學知識點最新精選總結(jié)4
基本事件的定義:
一次試驗連同其中可能出現(xiàn)的每一個結(jié)果稱為一個基本事件。
等可能基本事件:
若在一次試驗中,每個基本事件發(fā)生的可能性都相同,則稱這些基本事件為等可能基本事件。
古典概型:
如果一個隨機試驗滿足:(1)試驗中所有可能出現(xiàn)的`基本事件只有有限個;
。2)每個基本事件的發(fā)生都是等可能的;
那么,我們稱這個隨機試驗的概率模型為古典概型。
古典概型的概率:
如果一次試驗的等可能事件有n個,考試技巧,那么,每個等可能基本事件發(fā)生的概率都是;如果某個事件A包含了其中m個等可能基本事件,那么事件A發(fā)生的概率為。
古典概型解題步驟:
。1)閱讀題目,搜集信息;
。2)判斷是否是等可能事件,并用字母表示事件;
。3)求出基本事件總數(shù)n和事件A所包含的結(jié)果數(shù)m;
(4)用公式求出概率并下結(jié)論。
求古典概型的概率的關(guān)鍵:
求古典概型的概率的關(guān)鍵是如何確定基本事件總數(shù)及事件A包含的基本事件的個數(shù)。
高中高考數(shù)學知識點最新精選總結(jié)5
等式的性質(zhì):①不等式的性質(zhì)可分為不等式基本性質(zhì)和不等式運算性質(zhì)兩部分。
不等式基本性質(zhì)有:
。1)a>bb
。2)a>b,b>ca>c(傳遞性)
。3)a>ba+c>b+c(c∈R)
。4)c>0時,a>bac>bc
c<0時,a>bac
運算性質(zhì)有:
。1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
。4)a>b>0>(n∈N,n>1)。
應注意,上述性質(zhì)中,條件與結(jié)論的邏輯關(guān)系有兩種:“”和“”即推出關(guān)系和等價關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應用不等式性質(zhì)。
、陉P(guān)于不等式的性質(zhì)的考察,主要有以下三類問題:
。1)根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。
。2)利用不等式的性質(zhì)及實數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實數(shù)值的大小。
。3)利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。
【高中高考數(shù)學知識點最新精選總結(jié)】相關(guān)文章:
高考數(shù)學知識點總結(jié)05-18
高中語文知識點總結(jié)01-15
高考最新短信 高考最新祝福語06-04
高一數(shù)學知識點總結(jié)07-20
高中立體幾何知識點總結(jié)01-15
高中物理知識點總結(jié)15篇01-06