毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2021-10-25 13:19:04 總結(jié) 我要投稿

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)集錦15篇

  總結(jié)是在某一特定時(shí)間段對(duì)學(xué)習(xí)和工作生活或其完成情況,包括取得的成績(jī)、存在的問(wèn)題及得到的經(jīng)驗(yàn)和教訓(xùn)加以回顧和分析的書(shū)面材料,通過(guò)它可以正確認(rèn)識(shí)以往學(xué)習(xí)和工作中的優(yōu)缺點(diǎn),為此要我們寫(xiě)一份總結(jié)?偨Y(jié)一般是怎么寫(xiě)的呢?以下是小編幫大家整理的高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)集錦15篇

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  1、幾何概型的定義:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱(chēng)這樣的概率模型為幾何概率模型,簡(jiǎn)稱(chēng)幾何概型。

  2、幾何概型的概率公式:P(A)=構(gòu)成事件A的區(qū)域長(zhǎng)度(面積或體積);

  試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域長(zhǎng)度(面積或體積)

  3、幾何概型的特點(diǎn):

  1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);

  2)每個(gè)基本事件出現(xiàn)的可能性相等、

  4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗(yàn)結(jié)果是可數(shù)的;而幾何概型則是在試驗(yàn)中出現(xiàn)無(wú)限多個(gè)結(jié)果,且與事件的區(qū)域長(zhǎng)度(或面積、體積等)有關(guān),即試驗(yàn)結(jié)果具有無(wú)限性,是不可數(shù)的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗(yàn)結(jié)果都具有等可能性,這是二者的共性。

  通過(guò)以上對(duì)于幾何概型的基本知識(shí)點(diǎn)的梳理,我們不難看出其要核是:要抓住幾何概型具有無(wú)限性和等可能性?xún)蓚(gè)特點(diǎn),無(wú)限性是指在一次試驗(yàn)中,基本事件的個(gè)數(shù)可以是無(wú)限的,這是區(qū)分幾何概型與古典概型的關(guān)鍵所在;等可能性是指每一個(gè)基本事件發(fā)生的可能性是均等的,這是解題的基本前提。因此,用幾何概型求解的概率問(wèn)題和古典概型的基本思路是相同的,同屬于“比例法”,即隨機(jī)事件A的概率可以用“事件A包含的基本事件所占的圖形的長(zhǎng)度、面積(體積)和角度等”與“試驗(yàn)的基本事件所占總長(zhǎng)度、面積(體積)和角度等”之比來(lái)表示。下面就幾何概型常見(jiàn)類(lèi)型題作一歸納梳理。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  考點(diǎn)一:向量的概念、向量的基本定理

  【內(nèi)容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線(xiàn)向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。

  注意對(duì)向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無(wú)法比較大小,它們的?杀容^大小。

  考點(diǎn)二:向量的運(yùn)算

  【內(nèi)容解讀】向量的運(yùn)算要求掌握向量的加減法運(yùn)算,會(huì)用平行四邊形法則、三角形法則進(jìn)行向量的加減運(yùn)算;掌握實(shí)數(shù)與向量的積運(yùn)算,理解兩個(gè)向量共線(xiàn)的含義,會(huì)判斷兩個(gè)向量的平行關(guān)系;掌握向量的數(shù)量積的運(yùn)算,體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量積的運(yùn)算,能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用向量積判斷兩個(gè)平面向量的垂直關(guān)系。

  【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運(yùn)算,有時(shí)也會(huì)與其它內(nèi)容相結(jié)合。

  考點(diǎn)三:定比分點(diǎn)

  【內(nèi)容解讀】掌握線(xiàn)段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能熟練應(yīng)用,求點(diǎn)分有向線(xiàn)段所成比時(shí),可借助圖形來(lái)幫助理解。

  【命題規(guī)律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會(huì)與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。

  考點(diǎn)四:向量與三角函數(shù)的綜合問(wèn)題

  【內(nèi)容解讀】向量與三角函數(shù)的綜合問(wèn)題是高考經(jīng)常出現(xiàn)的問(wèn)題,考查了向量的知識(shí),三角函數(shù)的知識(shí),達(dá)到了高考中試題的覆蓋面的要求。

  【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運(yùn)算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問(wèn)題,屬中檔偏易題。

  考點(diǎn)五:平面向量與函數(shù)問(wèn)題的交匯

  【內(nèi)容解讀】平面向量與函數(shù)交匯的問(wèn)題,主要是向量與二次函數(shù)結(jié)合的問(wèn)題為主,要注意自變量的取值范圍。

  【命題規(guī)律】命題多以解答題為主,屬中檔題。

  考點(diǎn)六:平面向量在平面幾何中的應(yīng)用

  【內(nèi)容解讀】向量的坐標(biāo)表示實(shí)際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運(yùn)算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問(wèn)題中較難解決的問(wèn)題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運(yùn)算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問(wèn)題轉(zhuǎn)化為相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問(wèn)題得到解決.

  【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  一、隨機(jī)事件

  主要掌握好(三四五)

  (1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差A(yù)-B可以表示成A與B的逆的積。

  (2)四種運(yùn)算律:交換律、結(jié)合律、分配律、德莫根律。

  (3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對(duì)立、相互獨(dú)立。

  二、概率定義

  (1)統(tǒng)計(jì)定義:頻率穩(wěn)定在一個(gè)數(shù)附近,這個(gè)數(shù)稱(chēng)為事件的概率;(2)古典定義:要求樣本空間只有有限個(gè)基本事件,每個(gè)基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個(gè)數(shù)與樣本空間所含基本事件個(gè)數(shù)的比稱(chēng)為事件的古典概率;

  (3)幾何概率:樣本空間中的元素有無(wú)窮多個(gè),每個(gè)元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個(gè)幾何圖形,事件A看成這個(gè)圖形的子集,它的概率通過(guò)子集圖形的大小與樣本空間圖形的大小的比來(lái)計(jì)算;

  (4)公理化定義:滿(mǎn)足三條公理的任何從樣本空間的子集集合到[0,1]的映射。

  三、概率性質(zhì)與公式

  (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

  (2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);

  (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨(dú)立,則P(AB)=P(A)P(B);

  (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

  貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

  如果一個(gè)事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.

  (5)二項(xiàng)概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個(gè)問(wèn)題可以看成n重貝努力試驗(yàn)(三個(gè)條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時(shí),要考慮二項(xiàng)概率公式.

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  1.2空間幾何體的三視圖和直觀圖

  11三視圖:

  正視圖:從前往后

  側(cè)視圖:從左往右

  俯視圖:從上往下

  22畫(huà)三視圖的原則:

  長(zhǎng)對(duì)齊、高對(duì)齊、寬相等

  33直觀圖:斜二測(cè)畫(huà)法

  44斜二測(cè)畫(huà)法的步驟:

  (1).平行于坐標(biāo)軸的線(xiàn)依然平行于坐標(biāo)軸;

  (2).平行于y軸的線(xiàn)長(zhǎng)度變半,平行于x,z軸的線(xiàn)長(zhǎng)度不變;

  (3).畫(huà)法要寫(xiě)好。

  5用斜二測(cè)畫(huà)法畫(huà)出長(zhǎng)方體的步驟:(1)畫(huà)軸(2)畫(huà)底面(3)畫(huà)側(cè)棱(4)成圖

  1.3空間幾何體的表面積與體積

  (一)空間幾何體的表面積

  1棱柱、棱錐的表面積:各個(gè)面面積之和

  2圓柱的表面積3圓錐的表面積

  4圓臺(tái)的表面積

  5球的表面積

  (二)空間幾何體的體積

  1柱體的體積

  2錐體的體積

  3臺(tái)體的體積

  4球體的體積

  高二數(shù)學(xué)必修二知識(shí)點(diǎn):直線(xiàn)與平面的位置關(guān)系

  2.1空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系

  2.1.1

  1平面含義:平面是無(wú)限延展的

  2平面的畫(huà)法及表示

  (1)平面的畫(huà)法:水平放置的平面通常畫(huà)成一個(gè)平行四邊形,銳角畫(huà)成450,且橫邊畫(huà)成鄰邊的2倍長(zhǎng)(如圖)

  (2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對(duì)的兩個(gè)頂點(diǎn)的大寫(xiě)字母來(lái)表示,如平面AC、平面ABCD等。

  3三個(gè)公理:

  (1)公理1:如果一條直線(xiàn)上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線(xiàn)在此平面內(nèi)

  符號(hào)表示為

  A∈L

  B∈L=>Lα

  A∈α

  B∈α

  公理1作用:判斷直線(xiàn)是否在平面內(nèi)

  (2)公理2:過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面。

  符號(hào)表示為:A、B、C三點(diǎn)不共線(xiàn)=>有且只有一個(gè)平面α,

  使A∈α、B∈α、C∈α。

  公理2作用:確定一個(gè)平面的依據(jù)。

  (3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)。

  符號(hào)表示為:P∈α∩β=>α∩β=L,且P∈L

  公理3作用:判定兩個(gè)平面是否相交的依據(jù)

  2.1.2空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系

  1空間的兩條直線(xiàn)有如下三種關(guān)系:

  共面直線(xiàn)

  相交直線(xiàn):同一平面內(nèi),有且只有一個(gè)公共點(diǎn);

  平行直線(xiàn):同一平面內(nèi),沒(méi)有公共點(diǎn);

  異面直線(xiàn):不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn)。

  2公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行。

  符號(hào)表示為:設(shè)a、b、c是三條直線(xiàn)

  a∥b

  c∥b

  強(qiáng)調(diào):公理4實(shí)質(zhì)上是說(shuō)平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。

  公理4作用:判斷空間兩條直線(xiàn)平行的依據(jù)。

  3等角定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)

  4注意點(diǎn):

 、賏'與b'所成的角的大小只由a、b的相互位置來(lái)確定,與O的選擇無(wú)關(guān),為了簡(jiǎn)便,點(diǎn)O一般取在兩直線(xiàn)中的一條上;

 、趦蓷l異面直線(xiàn)所成的角θ∈(0,);

 、郛(dāng)兩條異面直線(xiàn)所成的角是直角時(shí),我們就說(shuō)這兩條異面直線(xiàn)互相垂直,記作a⊥b;

 、軆蓷l直線(xiàn)互相垂直,有共面垂直與異面垂直兩種情形;

 、萦(jì)算中,通常把兩條異面直線(xiàn)所成的角轉(zhuǎn)化為兩條相交直線(xiàn)所成的角。

  2.1.3—2.1.4空間中直線(xiàn)與平面、平面與平面之間的位置關(guān)系

  1、直線(xiàn)與平面有三種位置關(guān)系:

  (1)直線(xiàn)在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)

  (2)直線(xiàn)與平面相交——有且只有一個(gè)公共點(diǎn)

  (3)直線(xiàn)在平面平行——沒(méi)有公共點(diǎn)

  指出:直線(xiàn)與平面相交或平行的情況統(tǒng)稱(chēng)為直線(xiàn)在平面外,可用aα來(lái)表示

  aαa∩α=Aa∥α

  2.2.直線(xiàn)、平面平行的判定及其性質(zhì)

  2.2.1直線(xiàn)與平面平行的判定

  1、直線(xiàn)與平面平行的判定定理:平面外一條直線(xiàn)與此平面內(nèi)的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行。

  簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行。

  符號(hào)表示:

  aα

  bβ=>a∥α

  a∥b

  2.2.2平面與平面平行的判定

  1、兩個(gè)平面平行的判定定理:一個(gè)平面內(nèi)的兩條交直線(xiàn)與另一個(gè)平面平行,則這兩個(gè)平面平行。

  符號(hào)表示:

  aβ

  bβ

  a∩b=Pβ∥α

  a∥α

  b∥α

  2、判斷兩平面平行的方法有三種:

  (1)用定義;

  (2)判定定理;

  (3)垂直于同一條直線(xiàn)的兩個(gè)平面平行。

  2.2.3—2.2.4直線(xiàn)與平面、平面與平面平行的性質(zhì)

  1、定理:一條直線(xiàn)與一個(gè)平面平行,則過(guò)這條直線(xiàn)的任一平面與此平面的交線(xiàn)與該直線(xiàn)平行。

  簡(jiǎn)記為:線(xiàn)面平行則線(xiàn)線(xiàn)平行。

  符號(hào)表示:

  a∥α

  aβa∥b

  α∩β=b

  作用:利用該定理可解決直線(xiàn)間的平行問(wèn)題。

  2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。

  符號(hào)表示:

  α∥β

  α∩γ=aa∥b

  β∩γ=b

  作用:可以由平面與平面平行得出直線(xiàn)與直線(xiàn)平行

  2.3直線(xiàn)、平面垂直的判定及其性質(zhì)

  2.3.1直線(xiàn)與平面垂直的判定

  1、定義

  如果直線(xiàn)L與平面α內(nèi)的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)L與平面α互相垂直,記作L⊥α,直線(xiàn)L叫做平面α的垂線(xiàn),平面α叫做直線(xiàn)L的垂面。直線(xiàn)與平面垂直時(shí),它們公共點(diǎn)P叫做垂足。

  2、判定定理:一條直線(xiàn)與一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直。

  注意點(diǎn):a)定理中的“兩條相交直線(xiàn)”這一條件不可忽視;

  b)定理體現(xiàn)了“直線(xiàn)與平面垂直”與“直線(xiàn)與直線(xiàn)垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。

  2.3.2平面與平面垂直的判定

  1、二面角的概念:表示從空間一直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形

  2、二面角的記法:二面角α-l-β或α-AB-β

  3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直。

  2.3.3—2.3.4直線(xiàn)與平面、平面與平面垂直的性質(zhì)

  1、定理:垂直于同一個(gè)平面的兩條直線(xiàn)平行。

  2性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  一、導(dǎo)數(shù)的應(yīng)用

  1.用導(dǎo)數(shù)研究函數(shù)的最值

  確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開(kāi)區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來(lái)檢驗(yàn)下學(xué)習(xí)成果。

  2.生活中常見(jiàn)的函數(shù)優(yōu)化問(wèn)題

  1)費(fèi)用、成本最省問(wèn)題

  2)利潤(rùn)、收益最大問(wèn)題

  3)面積、體積最(大)問(wèn)題

  二、推理與證明

  1.歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,破解的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類(lèi)比推理的難點(diǎn)是發(fā)現(xiàn)兩類(lèi)對(duì)象的相似特征,由其中一類(lèi)對(duì)象的特征得出另一類(lèi)對(duì)象的特征,破解的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類(lèi)對(duì)象之間的關(guān)系,通過(guò)兩類(lèi)對(duì)象已知的相似特征得出所需要的相似特征。

  2.類(lèi)比推理:由兩類(lèi)對(duì)象具有某些類(lèi)似特征和其中一類(lèi)對(duì)象的某些已知特征,推出另一類(lèi)對(duì)象也具有這些特征的推理稱(chēng)為類(lèi)比推理,簡(jiǎn)而言之,類(lèi)比推理是由特殊到特殊的推理。

  三、不等式

  對(duì)于含有參數(shù)的一元二次不等式解的討論

  1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。

  2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據(jù)這兩個(gè)根的大小進(jìn)行分類(lèi)討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類(lèi)標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過(guò)因式分解的方法求出來(lái),則根據(jù)方程的判別式進(jìn)行分類(lèi)討論。通過(guò)不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的.過(guò)程中總結(jié)出來(lái)。

  拓展閱讀

  說(shuō)明:以下內(nèi)容為本文主關(guān)鍵詞的百科內(nèi)容,一詞可能多意,僅作為參考閱讀內(nèi)容,下載的文檔不包含此內(nèi)容。每個(gè)關(guān)鍵詞后面會(huì)隨機(jī)推薦一個(gè)搜索引擎工具,方便用戶(hù)從多個(gè)垂直領(lǐng)域了解更多與本文相似的內(nèi)容。

  1、數(shù)學(xué):數(shù)學(xué),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門(mén)學(xué)科。數(shù)學(xué)是人類(lèi)對(duì)事物的抽象結(jié)構(gòu)與模式進(jìn)行嚴(yán)格描述的一種通用手段,可以應(yīng)用于現(xiàn)實(shí)世界的任何問(wèn)題,所有的數(shù)學(xué)對(duì)象本質(zhì)上都是人為定義的。從這個(gè)意義上,數(shù)學(xué)屬于形式科學(xué),而不是自然科學(xué)。不同的數(shù)學(xué)家和哲學(xué)家對(duì)數(shù)學(xué)的確切范圍和定義有一系列的看法。在人類(lèi)歷史發(fā)展和社會(huì)生活中,數(shù)學(xué)發(fā)揮著不可替代的作用,同時(shí)也是學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基本工具。數(shù)學(xué)史數(shù)理邏輯與數(shù)學(xué)基礎(chǔ)a:演繹邏輯學(xué)(也稱(chēng)符號(hào)邏輯學(xué)),b:證明論(也稱(chēng)元數(shù)學(xué)),c:遞歸論,d:模型論,e:公理集合論,f:數(shù)學(xué)基礎(chǔ),g:數(shù)理邏輯與數(shù)學(xué)基礎(chǔ)其他學(xué)科。數(shù)論a:初等數(shù)論,b:解析數(shù)論,c:代數(shù)數(shù)論,d:超越數(shù)論,e:丟番圖逼近,f:數(shù)的幾何,g:概率數(shù)論,h:計(jì)算數(shù)論,i:數(shù)論其他學(xué)科。代數(shù)學(xué)a:線(xiàn)性代數(shù),b:群論,c:域論,d:李群,e:李代數(shù),f:Kac-Moody代數(shù),g:環(huán)論(包括交換環(huán)與交換代數(shù),...頭條搜索更多高二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)

  2、類(lèi)比推理:類(lèi)比推理亦稱(chēng)“類(lèi)推”。推理的一種形式。根據(jù)兩個(gè)對(duì)象在某些屬性上相同或相似,通過(guò)比較而推斷出它們?cè)谄渌麑傩陨弦蚕嗤耐评磉^(guò)程。它是從觀察個(gè)別現(xiàn)象開(kāi)始的,因而近似歸納推理。但它又不是由特殊到一般,而是由特殊到特殊,因而又不同于歸納推理。分完全類(lèi)推和不完全類(lèi)推兩種形式。完全類(lèi)推是兩個(gè)或兩類(lèi)事物在進(jìn)行比較的方面完全相同時(shí)的類(lèi)推;不完全類(lèi)推是兩個(gè)或兩類(lèi)事物在進(jìn)行比較的方面不完全相同時(shí)的類(lèi)推。這是科學(xué)研究中常用的方法之一。它是從特殊推向特殊的推理。類(lèi)比推理是根據(jù)兩個(gè)或兩類(lèi)對(duì)象有部分屬性相同,從而推出它們的其他屬性也相同的推理。簡(jiǎn)稱(chēng)類(lèi)推、類(lèi)比。以關(guān)于兩個(gè)事物某些屬性相同的判斷為前提,推出兩個(gè)事物的其他屬性相同的結(jié)論的推理。如聲和光有不少屬性相同--直線(xiàn)傳播,有反射、折射和干擾等現(xiàn)象;由此推出:既然聲有波動(dòng)性質(zhì),光也有波動(dòng)性質(zhì)。這就是類(lèi)比推理。類(lèi)比推理具有或然性。如果前提中確認(rèn)的共同屬性很少,而且共同屬性和推出來(lái)的屬性沒(méi)有什么關(guān)系,這樣的類(lèi)比推...谷歌搜索更多高二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)

  3、總結(jié):總結(jié)是事后對(duì)某一階段的工作或某項(xiàng)工作的完成情況,包括取得的成績(jī)、存在的問(wèn)題及得到的經(jīng)驗(yàn)和教訓(xùn)加以回顧和分析,為今后的工作提供幫助和借鑒的一種書(shū)面材料。(1)自身性?偨Y(jié)都是以第一人稱(chēng),從自身出發(fā)。它是單位或個(gè)人自身實(shí)踐活動(dòng)的反映,其內(nèi)容行文來(lái)自自身實(shí)踐,其結(jié)論也為指導(dǎo)今后自身實(shí)踐。(2)指導(dǎo)性?偨Y(jié)以回顧思考的方式對(duì)自身以往實(shí)踐做理性認(rèn)識(shí),找出事物本質(zhì)和發(fā)展規(guī)律,取得經(jīng)驗(yàn),避免失誤,以指導(dǎo)未來(lái)工作。(3)理論性。總結(jié)是理論的升華,是對(duì)前一階段工作的經(jīng)驗(yàn)、教訓(xùn)的分析研究,借此上升到理論的高度,并從中提煉出有規(guī)律性的東西,從而提高認(rèn)識(shí),以正確的認(rèn)識(shí)來(lái)把握客觀事物,更好地指導(dǎo)今后的實(shí)際工作。(4)客觀性?偨Y(jié)是對(duì)實(shí)際工作再認(rèn)識(shí)的過(guò)程,是對(duì)前一階段工作的回顧?偨Y(jié)的內(nèi)容必須要完全忠于自身的客觀實(shí)踐,其材料必須以客觀事實(shí)為依據(jù),不允許東拼西湊,要真實(shí)、客觀地分析情況、總結(jié)經(jīng)驗(yàn)。(1)綜合性總結(jié)。對(duì)某一單位、某一部門(mén)工作進(jìn)行全面性總結(jié),既反...頭條搜索更多高二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)

  4、因式分解:把一個(gè)多項(xiàng)式在一個(gè)范圍(如實(shí)數(shù)范圍內(nèi)分解,即所有項(xiàng)均為實(shí)數(shù))化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項(xiàng)式的因式分解,也叫作把這個(gè)多項(xiàng)式分解因式。把一個(gè)多項(xiàng)式在一個(gè)范圍化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項(xiàng)式的因式分解,也叫作把這個(gè)多項(xiàng)式分解因式。因式分解是中學(xué)數(shù)學(xué)中最重要的恒等變形之一,它被廣泛地應(yīng)用于初等數(shù)學(xué)之中,在數(shù)學(xué)求根作圖、解一元二次方程方面也有很廣泛的應(yīng)用,是解決許多數(shù)學(xué)問(wèn)題的有力工具。因式分解方法靈活,技巧性強(qiáng)。學(xué)習(xí)這些方法與技巧,不僅是掌握因式分解內(nèi)容所需的,而且對(duì)于培養(yǎng)解題技能、發(fā)展思維能力都有著十分獨(dú)特的作用。學(xué)習(xí)它,既可以復(fù)習(xí)整式的四則運(yùn)算,又為學(xué)習(xí)分式打好基礎(chǔ);學(xué)好它,既可以培養(yǎng)學(xué)生的觀察、思維發(fā)展性、運(yùn)算能力,又可以提高綜合分析和解決問(wèn)題的能力;窘Y(jié)論:分解因式為整式乘法的逆過(guò)程。高級(jí)結(jié)論:在高等代數(shù)上,因式分解有一些重要結(jié)論,在初等代數(shù)層面上證明很困難,但是理解很容易。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  1、向量的加法

  向量的加法滿(mǎn)足平行四邊形法則和三角形法則。

  AB+BC=AC。

  a+b=(x+x',y+y')。

  a+0=0+a=a。

  向量加法的運(yùn)算律:

  交換律:a+b=b+a;

  結(jié)合律:(a+b)+c=a+(b+c)。

  2、向量的減法

  如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0

  AB-AC=CB. 即“共同起點(diǎn),指向被減”

  a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

  3、數(shù)乘向量

  實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

  當(dāng)λ>0時(shí),λa與a同方向;

  當(dāng)λ<0時(shí),λa與a反方向;

  當(dāng)λ=0時(shí),λa=0,方向任意。

  當(dāng)a=0時(shí),對(duì)于任意實(shí)數(shù)λ,都有λa=0。

  注:按定義知,如果λa=0,那么λ=0或a=0。

  實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線(xiàn)段伸長(zhǎng)或壓縮。

  當(dāng)∣λ∣>1時(shí),表示向量a的有向線(xiàn)段在原方向(λ>0)或反方向(λ<0)上伸長(zhǎng)為原來(lái)的∣λ∣倍;

  當(dāng)∣λ∣<1時(shí),表示向量a的有向線(xiàn)段在原方向(λ>0)或反方向(λ<0)上縮短為原來(lái)的∣λ∣倍。

  數(shù)與向量的乘法滿(mǎn)足下面的運(yùn)算律

  結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。

  向量對(duì)于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.

  數(shù)對(duì)于向量的分配律(第二分配律):λ(a+b)=λa+λb.

  數(shù)乘向量的消去律:① 如果實(shí)數(shù)λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

  4、向量的的數(shù)量積

  定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

  定義:兩個(gè)向量的數(shù)量積(內(nèi)積、點(diǎn)積)是一個(gè)數(shù)量,記作a·b。若a、b不共線(xiàn),則a·b=|a|·|b|·cos〈a,b〉;若a、b共線(xiàn),則a·b=+-∣a∣∣b∣。

  向量的數(shù)量積的坐標(biāo)表示:a·b=x·x'+y·y'。

  向量的數(shù)量積的運(yùn)算率

  a·b=b·a(交換率);

  (a+b)·c=a·c+b·c(分配率);

  向量的數(shù)量積的性質(zhì)

  a·a=|a|的平方。

  a⊥b 〈=〉a·b=0。

  |a·b|≤|a|·|b|。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  1、學(xué)會(huì)三視圖的分析:

  2、斜二測(cè)畫(huà)法應(yīng)注意的地方:

 。1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀圖時(shí),把它畫(huà)成對(duì)應(yīng)軸o'x'、o'y'、使∠x(chóng)'o'y'=45°(或135°);(2)平行于x軸的線(xiàn)段長(zhǎng)不變,平行于y軸的線(xiàn)段長(zhǎng)減半。(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度。

  3、表(側(cè))面積與體積公式:

 、胖w:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

 、棋F體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

 、桥_(tái)體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

  ⑷球體:①表面積:S=;②體積:V=

  4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)

  (1)直線(xiàn)與平面平行:①線(xiàn)線(xiàn)平行線(xiàn)面平行;②面面平行線(xiàn)面平行。

 。2)平面與平面平行:①線(xiàn)面平行面面平行。

 。3)垂直問(wèn)題:線(xiàn)線(xiàn)垂直線(xiàn)面垂直面面垂直。核心是線(xiàn)面垂直:垂直平面內(nèi)的兩條相交直線(xiàn)

  5、求角:(步驟———————Ⅰ。找或作角;Ⅱ。求角)

 、女惷嬷本(xiàn)所成角的求法:平移法:平移直線(xiàn),構(gòu)造三角形;

 、浦本(xiàn)與平面所成的角:直線(xiàn)與射影所成的角

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。

  面積公式

  若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:

  S=ab/2。

  且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:

  S=ch/2=c2/4。

  等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線(xiàn)角平分線(xiàn)垂線(xiàn)三線(xiàn)合一。

  反正弦函數(shù)的導(dǎo)數(shù):正弦函數(shù)y=sinx在[-π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsinx,表示一個(gè)正弦值為x的角,該角的范圍在[-π/2,π/2]區(qū)間內(nèi)。定義域[-1,1],值域[-π/2,π/2]。

  反函數(shù)求導(dǎo)方法

  若F(X),G(X)互為反函數(shù),

  則:F'(X)_'(X)=1

  E.G.:y=arcsin_siny

  y'_'=1(arcsinx)'_siny)'=1

  y'=1/(siny)'=1/(cosy)=1/根號(hào)(1-sin^2y)=1/根號(hào)(1-x^2)

  其余依此類(lèi)推

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  空間幾何體的三視圖

  定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

  俯視圖(從上向下)

  注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度。

  3、空間幾何體的直觀圖——斜二測(cè)畫(huà)法

  斜二測(cè)畫(huà)法特點(diǎn):①原來(lái)與x軸平行的線(xiàn)段仍然與x平行且長(zhǎng)度不變;

 、谠瓉(lái)與y軸平行的線(xiàn)段仍然與y平行,長(zhǎng)度為原來(lái)的一半。

  柱體、錐體、臺(tái)體的表面積與體積

  (1)幾何體的表面積為幾何體各個(gè)面的面積的和。

  (2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,為斜高,l為母線(xiàn))

  (3)柱體、錐體、臺(tái)體的體積公式

  (4)球體的表面積和體積公式:V=;S=

  空間點(diǎn)、直線(xiàn)、平面的位置關(guān)系

  公理1:如果一條直線(xiàn)的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線(xiàn)是所有的點(diǎn)都在這個(gè)平面內(nèi)。

  應(yīng)用:判斷直線(xiàn)是否在平面內(nèi)

  用符號(hào)語(yǔ)言表示公理1:

  公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)

  符號(hào):平面α和β相交,交線(xiàn)是a,記作α∩β=a。

  符號(hào)語(yǔ)言:

  公理2的作用:

  ①它是判定兩個(gè)平面相交的方法。

 、谒f(shuō)明兩個(gè)平面的交線(xiàn)與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線(xiàn)_共點(diǎn)。

 、鬯梢耘袛帱c(diǎn)在直線(xiàn)上,即證若干個(gè)點(diǎn)共線(xiàn)的重要依據(jù)。

  公理3:經(jīng)過(guò)不在同一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面。

  推論:一直線(xiàn)和直線(xiàn)外一點(diǎn)確定一平面;兩相交直線(xiàn)確定一平面;兩平行直線(xiàn)確定一平面。

  公理3及其推論作用:

  ①它是空間內(nèi)確定平面的依據(jù)

 、谒亲C明平面重合的依據(jù)

  公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行

  空間直線(xiàn)與直線(xiàn)之間的位置關(guān)系

  ①異面直線(xiàn)定義:不同在任何一個(gè)平面內(nèi)的兩條直線(xiàn)

 、诋惷嬷本(xiàn)性質(zhì):既不平行,又不相交。

 、郛惷嬷本(xiàn)判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線(xiàn)與平面內(nèi)不過(guò)該店的直線(xiàn)是異面直線(xiàn)

  ④異面直線(xiàn)所成角:作平行,令兩線(xiàn)相交,所得銳角或直角,即所成角。兩條異面直線(xiàn)所成角的范圍是(0°,90°],若兩條異面直線(xiàn)所成的角是直角,我們就說(shuō)這兩條異面直線(xiàn)互相垂直。

  求異面直線(xiàn)所成角步驟:

  A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。

  B、證明作出的角即為所求角

  C、利用三角形來(lái)求角

  (7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。

  (8)空間直線(xiàn)與平面之間的位置關(guān)系

  直線(xiàn)在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).

  三種位置關(guān)系的符號(hào)表示:aαa∩α=Aa‖α

  (9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);α‖β

  相交——有一條公共直線(xiàn)。α∩β=b

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  數(shù)列定義:

  如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。

  前n項(xiàng)和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

  以上n均屬于正整數(shù)。

  解釋說(shuō)明:

  從(1)式可以看出,an是n的一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線(xiàn)上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0。

  在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項(xiàng),且為數(shù)列的平均數(shù)。

  且任意兩項(xiàng)am,an的關(guān)系為:an=am+(n-m)d

  它可以看作等差數(shù)列廣義的通項(xiàng)公式。

  推論公式:

  從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

  若m,n,p,q∈N_且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等。

  基本公式:

  和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2

  項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1

  首項(xiàng)=2和÷項(xiàng)數(shù)-末項(xiàng)

  末項(xiàng)=2和÷項(xiàng)數(shù)-首項(xiàng)

  末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)×公差

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  一、直線(xiàn)與圓:

  1、直線(xiàn)的傾斜角的范圍是在平面直角坐標(biāo)系中,對(duì)于一條與軸相交的直線(xiàn),如果把軸繞著交點(diǎn)按逆時(shí)針?lè)较蜣D(zhuǎn)到和直線(xiàn)重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線(xiàn)的傾斜角。當(dāng)直線(xiàn)與軸重合或平行時(shí),規(guī)定傾斜角為0;

  2、斜率:已知直線(xiàn)的傾斜角為α,且α≠90°,則斜率k=tanα.過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線(xiàn)的斜率k=(y2-y1)/(x2-x1),另外切線(xiàn)的斜率用求導(dǎo)的方法。

  3、直線(xiàn)方程:

 。1)點(diǎn)斜式:直線(xiàn)過(guò)點(diǎn)斜率為,則直線(xiàn)方程為

 。2)斜截式:直線(xiàn)在軸上的截距為和斜率,則直線(xiàn)方程為

  4、直線(xiàn)與直線(xiàn)的位置關(guān)系:

 。1)平行A1/A2=B1/B2注意檢驗(yàn)

 。2)垂直A1A2+B1B2=0

  5、點(diǎn)到直線(xiàn)的距離公式;

  兩條平行線(xiàn)與的距離是

  6、圓的標(biāo)準(zhǔn)方程:圓的一般方程:注意能將標(biāo)準(zhǔn)方程化為一般方程

  7、過(guò)圓外一點(diǎn)作圓的切線(xiàn),一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線(xiàn).

  8、直線(xiàn)與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長(zhǎng)問(wèn)題.①相離②相切③相交

  9、解決直線(xiàn)與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形)直線(xiàn)與圓相交所得弦長(zhǎng)

  二、圓錐曲線(xiàn)方程:

  1、橢圓:①方程(a>b>0)注意還有一個(gè);②定義:|PF1|+|PF2|=2a>2c;③e=④長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c;a2=b2+c2;

  2、雙曲線(xiàn):①方程(a,b>0)注意還有一個(gè);②定義:||PF1|-|PF2||=2a<2c;③e=;④實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,焦距為2c;漸進(jìn)線(xiàn)或c2=a2+b2

  3、拋物線(xiàn):①方程y2=2px注意還有三個(gè),能區(qū)別開(kāi)口方向;②定義:|PF|=d焦點(diǎn)F(,0),準(zhǔn)線(xiàn)x=-;③焦半徑;焦點(diǎn)弦=x1+x2+p;

  4、直線(xiàn)被圓錐曲線(xiàn)截得的弦長(zhǎng)公式:

  三、直線(xiàn)、平面、簡(jiǎn)單幾何體:

  1、學(xué)會(huì)三視圖的分析:

  2、斜二測(cè)畫(huà)法應(yīng)注意的地方:

  (1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀圖時(shí),把它畫(huà)成對(duì)應(yīng)軸o'x'、o'y'、使∠x(chóng)'o'y'=45°(或135°);

 。2)平行于x軸的線(xiàn)段長(zhǎng)不變,平行于y軸的線(xiàn)段長(zhǎng)減半.

 。3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

  3、表(側(cè))面積與體積公式:

 。1)柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

 。2)錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

  (3)臺(tái)體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

 。4)球體:①表面積:S=;②體積:V=

  4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)

  (1)直線(xiàn)與平面平行:①線(xiàn)線(xiàn)平行線(xiàn)面平行;②面面平行線(xiàn)面平行。

 。2)平面與平面平行:①線(xiàn)面平行面面平行。

 。3)垂直問(wèn)題:線(xiàn)線(xiàn)垂直線(xiàn)面垂直面面垂直。核心是線(xiàn)面垂直:垂直平面內(nèi)的兩條相交直線(xiàn)

  5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

 。1)異面直線(xiàn)所成角的求法:平移法:平移直線(xiàn),構(gòu)造三角形;

 。2)直線(xiàn)與平面所成的角:直線(xiàn)與射影所成的角

  四、導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問(wèn)題、曲線(xiàn)切線(xiàn)問(wèn)題)

  1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.

  2、導(dǎo)數(shù)的幾何物理意義:曲線(xiàn)在點(diǎn)處切線(xiàn)的斜率

 、賙=f/(x0)表示過(guò)曲線(xiàn)y=f(x)上P(x0,f(x0))切線(xiàn)斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

  3.常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:①;②;③;

 、;⑥;⑦;⑧。

  4.、導(dǎo)數(shù)的四則運(yùn)算法則:

  5、導(dǎo)數(shù)的應(yīng)用:

 。1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

  注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

  (2)求極值的步驟:

 、偾髮(dǎo)數(shù);

 、谇蠓匠痰母;

  ③列表:檢驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;

 。3)求可導(dǎo)函數(shù)值與最小值的步驟:

 、∏蟮母;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。

  五、常用邏輯用語(yǔ):

  1、四種命題:

 、旁}:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

  注:1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉(zhuǎn)化。

  2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.

  3、邏輯聯(lián)結(jié)詞:

 。1)且(and):命題形式pq;pqpqpqp

 。2)或(or):命題形式pq;真真真真假

 。3)非(not):命題形式p.真假假真假

  假真假真真

  假假假假真

  “或命題”的真假特點(diǎn)是“一真即真,要假全假”;

  “且命題”的真假特點(diǎn)是“一假即假,要真全真”;

  “非命題”的真假特點(diǎn)是“一真一假”

  4、充要條件

  由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。

  5、全稱(chēng)命題與特稱(chēng)命題:

  短語(yǔ)“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱(chēng)量詞,并用符號(hào)表示。含有全體量詞的命題,叫做全稱(chēng)命題。

  短語(yǔ)“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號(hào)表示,含有存在量詞的命題,叫做存在性命題。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  (1)總體和樣本:

  ①在統(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體.

 、诎衙總(gè)研究對(duì)象叫做個(gè)體.

  ③把總體中個(gè)體的總數(shù)叫做總體容量.

 、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,_研究,我們稱(chēng)它為樣本.其中個(gè)體的個(gè)數(shù)稱(chēng)為樣本容量.

 。2)簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。

  就是從總體中不加任何分組、劃類(lèi)、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。

  (3)簡(jiǎn)單隨機(jī)抽樣常用的方法:

 、俪楹灧

 、陔S機(jī)數(shù)表法

 、塾(jì)算機(jī)模擬法

  在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:

 、倏傮w變異情況;

 、谠试S誤差范圍;

 、鄹怕时WC程度。

  (4)抽簽法:

 、俳o調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);

 、跍(zhǔn)備抽簽的工具,實(shí)施抽簽;

  ③對(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  課內(nèi)重視聽(tīng)講,課后及時(shí)復(fù)習(xí)。

  新知識(shí)的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極展開(kāi)思維預(yù)測(cè)下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識(shí)和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識(shí)點(diǎn)回憶一遍,正確掌握各類(lèi)公式的推理過(guò)程,應(yīng)盡量回憶而不采用不清楚立即翻書(shū)之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問(wèn)的學(xué)習(xí)作風(fēng),對(duì)于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來(lái)認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識(shí)的點(diǎn)、線(xiàn)、面結(jié)合起來(lái)交織成知識(shí)網(wǎng)絡(luò),納入自己的知識(shí)體系。

  適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。

  要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫(xiě)出自己的解題思路和正確的解題過(guò)程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。

  調(diào)整心態(tài),正確對(duì)待考試。

  首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。

  在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開(kāi),切忌考前去在保證正確率的前提下提高解題速度。對(duì)于一些容易的基礎(chǔ)題要有十二分把握拿全分;對(duì)于一些難題,也要盡量拿分,考試中要學(xué)會(huì)嘗試得分,使自己的水平正常甚至超常發(fā)揮。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  第一章:解三角形。掌握正弦余弦公式及其變式和推論和三角面積公式即可。

  第二章:數(shù)列?荚嚤乜肌5炔畹缺葦(shù)列的通項(xiàng)公式、前n項(xiàng)和及一些性質(zhì)。這一章屬于學(xué)起來(lái)很容易,但做題卻不會(huì)做的類(lèi)型。考試題中,一般都是要求通項(xiàng)公式、前n項(xiàng)和,所以拿到題目之后要帶有目的的去推導(dǎo)。

  第三章:不等式。這一章一般用線(xiàn)性規(guī)劃的形式來(lái)考察。這種題一般是和實(shí)際問(wèn)題聯(lián)系的,所以要會(huì)讀題,從題中找不等式,畫(huà)出線(xiàn)性規(guī)劃圖。然后再根據(jù)實(shí)際問(wèn)題的限制要求求最值。

  選修中的簡(jiǎn)單邏輯用語(yǔ)、圓錐曲線(xiàn)和導(dǎo)數(shù):邏輯用語(yǔ)只要弄懂充分條件和必要條件到底指的是前者還是后者,四種命題的真假性關(guān)系,邏輯連接詞,及否命題和命題的否定的區(qū)別,考試一般會(huì)用選擇題考這一知識(shí)點(diǎn),難度不大;圓錐曲線(xiàn)一般作為考試的壓軸題出現(xiàn)。而且有多問(wèn),一般第一問(wèn)較簡(jiǎn)單,是求曲線(xiàn)方程,只要記住圓錐曲線(xiàn)的表達(dá)式難度就不大。后面兩到三問(wèn)難打一般會(huì)很大,而且較費(fèi)時(shí)間。所以不建議做。

  這一章屬于學(xué)的比較難,考試也比較難,但是考試要求不高的內(nèi)容;導(dǎo)數(shù),導(dǎo)數(shù)公式、運(yùn)算法則、用導(dǎo)數(shù)求極值和最值的方法。一般會(huì)考察用導(dǎo)數(shù)求最值,會(huì)用導(dǎo)數(shù)公式就難度不大。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作。

  2。導(dǎo)數(shù)的幾何物理意義:曲線(xiàn)在點(diǎn)處切線(xiàn)的斜率

  ①k=f/(x0)表示過(guò)曲線(xiàn)y=f(x)上P(x0,f(x0))切線(xiàn)斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

  3。常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:

  4。導(dǎo)數(shù)的四則運(yùn)算法則:

  5。導(dǎo)數(shù)的應(yīng)用:

 。1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

  注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

 。2)求極值的步驟:

 、偾髮(dǎo)數(shù);

 、谇蠓匠痰母;

 、哿斜恚簷z驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;

 。3)求可導(dǎo)函數(shù)值與最小值的步驟:

  ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。

【高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)集錦15篇】相關(guān)文章:

數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)歸納12-29

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)通用15篇12-29

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(匯編15篇)12-29

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)集合15篇12-29

高二化學(xué)知識(shí)點(diǎn)總結(jié)01-06

高二化學(xué)知識(shí)點(diǎn)總結(jié)05-04

高二物理知識(shí)點(diǎn)總結(jié)05-04

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-18

高二化學(xué)選修三知識(shí)點(diǎn)總結(jié)01-07

高二物理重要的知識(shí)點(diǎn)總結(jié)01-06