毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

高考數(shù)學(xué)公式及知識(shí)點(diǎn)整理

時(shí)間:2022-10-10 15:04:54 總結(jié) 我要投稿

高考數(shù)學(xué)公式及知識(shí)點(diǎn)整理

  漫長(zhǎng)的學(xué)習(xí)生涯中,說(shuō)到知識(shí)點(diǎn),大家是不是都習(xí)慣性的重視?知識(shí)點(diǎn)也不一定都是文字,數(shù)學(xué)的知識(shí)點(diǎn)除了定義,同樣重要的公式也可以理解為知識(shí)點(diǎn)。還在苦惱沒(méi)有知識(shí)點(diǎn)總結(jié)嗎?以下是小編為大家整理的高考數(shù)學(xué)公式及知識(shí)點(diǎn)整理,希望能夠幫助到大家。

高考數(shù)學(xué)公式及知識(shí)點(diǎn)整理

  高三數(shù)學(xué)知識(shí)點(diǎn)之導(dǎo)數(shù)公式

  1.y=c(c為常數(shù)) y=0

  2.y=x^n y=nx^(n-1)

  3.y=a^x y=a^xlna

  y=e^x y=e^x

  4.y=logax y=logae/x

  y=lnx y=1/x

  5.y=sinx y=cosx

  6.y=cosx y=-sinx

  7.y=tanx y=1/cos^2x

  8.y=cotx y=-1/sin^2x

  9.y=arcsinx y=1/√1-x^2

  10.y=arccosx y=-1/√1-x^2

  11.y=arctanx y=1/1+x^2

  12.y=arccotx y=-1/1+x^2

  三角函數(shù)公式

  銳角三角函數(shù)公式

  sin α=∠α的對(duì)邊 / 斜邊

  cos α=∠α的鄰邊 / 斜邊

  tan α=∠α的對(duì)邊 / ∠α的鄰邊

  cot α=∠α的鄰邊 / ∠α的對(duì)邊

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2 是sinA的平方 sin2(A) )

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  三倍角公式推導(dǎo)

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina

  輔助角公式

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  降冪公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  推導(dǎo)公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  =2sina(1-sin2a)+(1-2sin2a)sina

  =3sina-4sin3a

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cos2a-1)cosa-2(1-sin2a)cosa

  =4cos3a-3cosa

  sin3a=3sina-4sin3a

  =4sina(3/4-sin2a)

  =4sina[(√3/2)2-sin2a]

  =4sina(sin260°-sin2a)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cos3a-3cosa

  =4cosa(cos2a-3/4)

  =4cosa[cos2a-(√3/2)2]

  =4cosa(cos2a-cos230°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述兩式相比可得

  tan3a=tanatan(60°-a)tan(60°+a)

  數(shù)學(xué)圓錐公式知識(shí)點(diǎn)

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

  余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

  圓的`標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)

  圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

  拋物線(xiàn)標(biāo)準(zhǔn)方程y2=2pxy2=-2px-x2=2pyx2=-2py

  直棱柱側(cè)面積S=c.h斜棱柱側(cè)面積S=c.h

  正棱錐側(cè)面積S=1/2c.h正棱臺(tái)側(cè)面積S=1/2(c+c)h

  圓臺(tái)側(cè)面積S=1/2(c+c)l=pi(R+r)l球的表面積S=4pi.r2

  圓柱側(cè)面積S=c.h=2pi.h圓錐側(cè)面積S=1/2.c.l=pi.r.l

  弧長(zhǎng)公式l=a.ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2.l.r

  錐體體積公式V=1/3.S.H圓錐體體積公式V=1/3.pi.r2h

  斜棱柱體積V=SL注:其中,S是直截面面積,L是側(cè)棱長(zhǎng)

  柱體體積公式V=s.h圓柱體V=p.r2h

  乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根與系數(shù)的關(guān)系X1+X2=-b/aX1.X2=c/a注:韋達(dá)定理

  判別式

  b2-4ac=0注:方程有兩個(gè)相等的實(shí)根

  b2-4ac>0注:方程有兩個(gè)不等的實(shí)根

  b2-4ac<0注:方程沒(méi)有實(shí)根,有共軛復(fù)數(shù)根

  三倍角公式

  三倍角的正弦、余弦和正切公式

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

  三倍角公式推導(dǎo)

  附推導(dǎo):

  tan3α=sin3α/cos3α

  =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

  =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

  上下同除以cos^3(α),得:

  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

  sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

  =2sinαcos^2(α)+(1-2sin^2(α))sinα

  =2sinα-2sin^3(α)+sinα-2sin^3(α)

  =3sinα-4sin^3(α)

  cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

  =(2cos^2(α)-1)cosα-2cosαsin^2(α)

  =2cos^3(α)-cosα+(2cosα-2cos^3(α))

  =4cos^3(α)-3cosα

  即

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  三倍角公式聯(lián)想記憶

  記憶方法:諧音、聯(lián)想

  正弦三倍角:3元 減 4元3角(欠債了(被減成負(fù)數(shù)),所以要“掙錢(qián)”(音似“正弦”))

  余弦三倍角:4元3角 減 3元(減完之后還有“余”)

  ☆☆注意函數(shù)名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

  另外的記憶方法:

  正弦三倍角: 山無(wú)司令 (諧音為 三無(wú)四立) 三指的是"3倍"sinα, 無(wú)指的是減號(hào), 四指的是"4倍", 立指的是sinα立方

  余弦三倍角: 司令無(wú)山 與上同理

  和差化積公式

  三角函數(shù)的和差化積公式

  sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

  積化和差公式

  三角函數(shù)的積化和差公式

  sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

  cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

  cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

  sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]

  和差化積公式推導(dǎo)

  附推導(dǎo):

  首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

  我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

  所以,sina*cosb=(sin(a+b)+sin(a-b))/2

  同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

  同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

  所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

  所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

  同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

  這樣,我們就得到了積化和差的四個(gè)公式:

  sina*cosb=(sin(a+b)+sin(a-b))/2

  cosa*sinb=(sin(a+b)-sin(a-b))/2

  cosa*cosb=(cos(a+b)+cos(a-b))/2

  sina*sinb=-(cos(a+b)-cos(a-b))/2

  有了積化和差的四個(gè)公式以后,我們只需一個(gè)變形,就可以得到和差化積的四個(gè)公式。

  我們把上述四個(gè)公式中的a+b設(shè)為x,a-b設(shè)為y,那么a=(x+y)/2,b=(x-y)/2

  把a(bǔ),b分別用x,y表示就可以得到和差化積的四個(gè)公式:

  sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

  sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

  cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

  cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

【高考數(shù)學(xué)公式及知識(shí)點(diǎn)整理】相關(guān)文章:

高考數(shù)學(xué)遺漏知識(shí)點(diǎn)整理02-22

高考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)整理02-17

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理01-24

高考數(shù)學(xué)知識(shí)點(diǎn)公式整理02-17

湖南文科數(shù)學(xué)高考知識(shí)點(diǎn)整理02-17

高考數(shù)學(xué)要考的知識(shí)點(diǎn)整理02-17

高考語(yǔ)文詩(shī)詞鑒賞知識(shí)點(diǎn)整理11-28

高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)整理12-23

《蘭亭集序》高考知識(shí)點(diǎn)整理10-05