毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

高二數(shù)學(xué)知識點(diǎn)及公式總結(jié)

時間:2024-02-20 13:14:07 總結(jié) 我要投稿
  • 相關(guān)推薦

高二數(shù)學(xué)知識點(diǎn)及公式總結(jié)

  總結(jié)是指對某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況進(jìn)行分析研究,做出帶有規(guī)律性結(jié)論的書面材料,通過它可以正確認(rèn)識以往學(xué)習(xí)和工作中的優(yōu)缺點(diǎn),是時候?qū)懸环菘偨Y(jié)了。我們該怎么寫總結(jié)呢?下面是小編幫大家整理的高二數(shù)學(xué)知識點(diǎn)及公式總結(jié),希望對大家有所幫助。

高二數(shù)學(xué)知識點(diǎn)及公式總結(jié)

高二數(shù)學(xué)知識點(diǎn)及公式總結(jié)1

  1、圓的定義

  平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑。

  2、圓的方程

  (x-a)^2+(y-b)^2=r^2

  (1)標(biāo)準(zhǔn)方程,圓心(a,b),半徑為r;

  (2)求圓方程的方法:

  一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。

  3、直線與圓的位置關(guān)系

  直線與圓的位置關(guān)系有相離,相切,相交三種情況:

  (1)設(shè)直線,圓,圓心到l的距離為,則有;;

  (2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

  (3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

  練習(xí)題:

  2.若圓(x-a)2+(y-b)2=r2過原點(diǎn),則()

  A.a2-b2=0B.a2+b2=r2

  C.a2+b2+r2=0D.a=0,b=0

  選B.因?yàn)閳A過原點(diǎn),所以(0,0)滿足方程,即(0-a)2+(0-b)2=r2,所以a2+b2=r2.

  2、高二數(shù)學(xué)知識點(diǎn)及公式總結(jié)

  空間中的垂直問題

  (1)線線、面面、線面垂直的定義

 、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

  ②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。

 、燮矫婧推矫娲怪保喝绻麅蓚平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

  (2)垂直關(guān)系的判定和性質(zhì)定理

 、倬面垂直判定定理和性質(zhì)定理

  判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。

  性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

 、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理

  判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。

  性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。

  3、高二數(shù)學(xué)知識點(diǎn)及公式總結(jié)

  1.1柱、錐、臺、球的結(jié)構(gòu)特征

  1.2空間幾何體的三視圖和直觀圖

  11三視圖:

  正視圖:從前往后

  側(cè)視圖:從左往右

  俯視圖:從上往下

  22畫三視圖的原則:

  長對齊、高對齊、寬相等

  33直觀圖:斜二測畫法

  44斜二測畫法的步驟:

  (1).平行于坐標(biāo)軸的線依然平行于坐標(biāo)軸;

  (2).平行于y軸的線長度變半,平行于x,z軸的線長度不變;

  (3).畫法要寫好。

  5用斜二測畫法畫出長方體的步驟:(1)畫軸(2)畫底面(3)畫側(cè)棱(4)成圖

  1.3空間幾何體的表面積與體積

  (一)空間幾何體的表面積

  1棱柱、棱錐的表面積:各個面面積之和

  2圓柱的表面積3圓錐的表面積

  4圓臺的表面積

  5球的表面積

  (二)空間幾何體的體積

  1柱體的體積

  2錐體的體積

  3臺體的體積

  4球體的體積

  高二數(shù)學(xué)必修二知識點(diǎn):直線與平面的位置關(guān)系

  2.1空間點(diǎn)、直線、平面之間的位置關(guān)系

  2.1.1

  1平面含義:平面是無限延展的

  2平面的畫法及表示

  (1)平面的畫法:水平放置的平面通常畫成一個平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(如圖)

  (2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個頂點(diǎn)或者相對的兩個頂點(diǎn)的大寫字母來表示,如平面AC、平面ABCD等。

  3三個公理:

  (1)公理1:如果一條直線上的兩點(diǎn)在一個平面內(nèi),那么這條直線在此平面內(nèi)

  符號表示為

  A∈L

  B∈L=>Lα

  A∈α

  B∈α

  公理1作用:判斷直線是否在平面內(nèi)

  (2)公理2:過不在一條直線上的三點(diǎn),有且只有一個平面。

  符號表示為:A、B、C三點(diǎn)不共線=>有且只有一個平面α,使A∈α、B∈α、C∈α。

  公理2作用:確定一個平面的依據(jù)。

  (3)公理3:如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。

  符號表示為:P∈α∩β=>α∩β=L,且P∈L

  公理3作用:判定兩個平面是否相交的依據(jù)

  2.1.2空間中直線與直線之間的位置關(guān)系

  1空間的兩條直線有如下三種關(guān)系:

  共面直線

  相交直線:同一平面內(nèi),有且只有一個公共點(diǎn);

  平行直線:同一平面內(nèi),沒有公共點(diǎn);

  異面直線:不同在任何一個平面內(nèi),沒有公共點(diǎn)。

  2公理4:平行于同一條直線的兩條直線互相平行。

  符號表示為:設(shè)a、b、c是三條直線

  a∥b

  c∥b

  強(qiáng)調(diào):公理4實(shí)質(zhì)上是說平行具有傳遞性,在平面、空間這個性質(zhì)都適用。

  公理4作用:判斷空間兩條直線平行的依據(jù)。

  3等角定理:空間中如果兩個角的兩邊分別對應(yīng)平行,那么這兩個角相等或互補(bǔ)

  4注意點(diǎn):

 、賏'與b'所成的角的大小只由a、b的相互位置來確定,與O的選擇無關(guān),為了簡便,點(diǎn)O一般取在兩直線中的一條上;

 、趦蓷l異面直線所成的角θ∈(0,);

 、郛(dāng)兩條異面直線所成的角是直角時,我們就說這兩條異面直線互相垂直,記作a⊥b;

 、軆蓷l直線互相垂直,有共面垂直與異面垂直兩種情形;

 、萦嬎阒,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。

  2.1.3—2.1.4空間中直線與平面、平面與平面之間的位置關(guān)系

  1、直線與平面有三種位置關(guān)系:

  (1)直線在平面內(nèi)——有無數(shù)個公共點(diǎn)

  (2)直線與平面相交——有且只有一個公共點(diǎn)

  (3)直線在平面平行——沒有公共點(diǎn)

  指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示

  aαa∩α=Aa∥α

  2.2.直線、平面平行的判定及其性質(zhì)

  2.2.1直線與平面平行的判定

  1、直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。

  簡記為:線線平行,則線面平行。

  符號表示:

  aα

  bβ=>a∥α

  a∥b

  2.2.2平面與平面平行的判定

  1、兩個平面平行的判定定理:一個平面內(nèi)的兩條交直線與另一個平面平行,則這兩個平面平行。

  符號表示:

  aβ

  bβ

  a∩b=Pβ∥α

  a∥α

  b∥α

  2、判斷兩平面平行的方法有三種:

  (1)用定義;

  (2)判定定理;

  (3)垂直于同一條直線的兩個平面平行。

  2.2.3—2.2.4直線與平面、平面與平面平行的性質(zhì)

  1、定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。

  簡記為:線面平行則線線平行。

  符號表示:

  a∥α

  aβa∥b

  α∩β=b

  作用:利用該定理可解決直線間的平行問題。

  2、定理:如果兩個平面同時與第三個平面相交,那么它們的交線平行。

  符號表示:

  α∥β

  α∩γ=aa∥b

  β∩γ=b

  作用:可以由平面與平面平行得出直線與直線平行

  2.3直線、平面垂直的判定及其性質(zhì)

  2.3.1直線與平面垂直的判定

  1、定義

  如果直線L與平面α內(nèi)的任意一條直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。直線與平面垂直時,它們公共點(diǎn)P叫做垂足。

  2、判定定理:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。

  注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;

  b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。

  2.3.2平面與平面垂直的判定

  1、二面角的概念:表示從空間一直線出發(fā)的兩個半平面所組成的圖形

  2、二面角的記法:二面角α-l-β或α-AB-β

  3、兩個平面互相垂直的判定定理:一個平面過另一個平面的垂線,則這兩個平面垂直。

  2.3.3—2.3.4直線與平面、平面與平面垂直的性質(zhì)

  1、定理:垂直于同一個平面的兩條直線平行。

  2性質(zhì)定理:兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直。

  4、高二數(shù)學(xué)知識點(diǎn)及公式總結(jié)

  分層抽樣

  先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機(jī)抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。

  兩種方法

  1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

  2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

  2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個個同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。

  分層標(biāo)準(zhǔn)

  (1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。

  (2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。

  (3)以那些有明顯分層區(qū)分的變量作為分層變量。

  分層的比例問題

  (1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。

  (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。

  5、高二數(shù)學(xué)知識點(diǎn)及公式總結(jié)

  考點(diǎn)一:向量的概念、向量的基本定理

  了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。

  注意對向量概念的理解,向量是可以自由移動的,平移后所得向量與原向量相同;兩個向量無法比較大小,它們的模可比較大小。

  考點(diǎn)二:向量的運(yùn)算

  向量的運(yùn)算要求掌握向量的加減法運(yùn)算,會用平行四邊形法則、三角形法則進(jìn)行向量的加減運(yùn)算;掌握實(shí)數(shù)與向量的積運(yùn)算,理解兩個向量共線的含義,會判斷兩個向量的平行關(guān)系;掌握向量的數(shù)量積的運(yùn)算,體會平面向量的數(shù)量積與向量投影的`關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行平面向量積的運(yùn)算,能運(yùn)用數(shù)量積表示兩個向量的夾角,會用向量積判斷兩個平面向量的垂直關(guān)系。

  命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運(yùn)算,有時也會與其它內(nèi)容相結(jié)合。

  考點(diǎn)三:定比分點(diǎn)

  掌握線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能熟練應(yīng)用,求點(diǎn)分有向線段所成比時,可借助圖形來幫助理解。

  重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。

  考點(diǎn)四:向量與三角函數(shù)的綜合問題

  向量與三角函數(shù)的綜合問題是高考經(jīng)常出現(xiàn)的問題,考查了向量的知識,三角函數(shù)的知識,達(dá)到了高考中試題的覆蓋面的要求。

  命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運(yùn)算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問題,屬中檔偏易題。

  考點(diǎn)五:平面向量與函數(shù)問題的交匯

  平面向量與函數(shù)交匯的問題,主要是向量與二次函數(shù)結(jié)合的問題為主,要注意自變量的取值范圍。

  命題多以解答題為主,屬中檔題。

  考點(diǎn)六:平面向量在平面幾何中的應(yīng)用

  向量的坐標(biāo)表示實(shí)際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運(yùn)算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問題中較難解決的問題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運(yùn)算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問題轉(zhuǎn)化為相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問題得到解決.

  命題多以解答題為主,屬中等偏難的試題。

  6、高二數(shù)學(xué)知識點(diǎn)及公式總結(jié)

  1、圓的定義

  平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑。

  2、圓的方程

  (x-a)^2+(y-b)^2=r^2

  (1)標(biāo)準(zhǔn)方程,圓心(a,b),半徑為r;

  (2)求圓方程的方法:

  一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。

  3、直線與圓的位置關(guān)系

  直線與圓的位置關(guān)系有相離,相切,相交三種情況:

  (1)設(shè)直線,圓,圓心到l的距離為,則有;;

  (2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

  (3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

  練習(xí)題:

  2.若圓(x-a)2+(y-b)2=r2過原點(diǎn),則()

  A.a2-b2=0B.a2+b2=r2

  C.a2+b2+r2=0D.a=0,b=0

  選B.因?yàn)閳A過原點(diǎn),所以(0,0)滿足方程,即(0-a)2+(0-b)2=r2,所以a2+b2=r2.

  7、高二數(shù)學(xué)公式總結(jié)

  高中數(shù)學(xué)常用公式乘法與因式分

  a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  高中數(shù)學(xué)常用公式三角不等式

  |a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根與系數(shù)的關(guān)系X1+X2=-b/a X1_X2=c/a注:韋達(dá)定理

  高中數(shù)學(xué)常用公式判別式

  b2-4ac=0注:方程有兩個相等的實(shí)根

  b2-4ac>0注:方程有兩個不等的實(shí)根

  b2-4ac<0注:方程沒有實(shí)根,有共軛復(fù)數(shù)根

  高中數(shù)學(xué)常用公式三角函數(shù)公式

  兩角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

  高中數(shù)學(xué)常用公式某些數(shù)列前n項和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

  余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

  高二數(shù)學(xué)知識點(diǎn)

  集合

  一、集合概念

  (1)集合中元素的特征:確定性,互異性,無序性。

  (2)集合與元素的關(guān)系用符號=表示。

  (3)常用數(shù)集的符號表示:自然數(shù)集;正整數(shù)集;整數(shù)集;有理數(shù)集、實(shí)數(shù)集。

  (4)集合的表示法:列舉法,描述法,韋恩圖。

  (5)空集是指不含任何元素的集合。

  空集是任何集合的子集,是任何非空集合的真子集。

  函數(shù)

  一、映射與函數(shù):

  (1)映射的概念:(2)一一映射:(3)函數(shù)的概念:

  二、函數(shù)的三要素:

  相同函數(shù)的判斷方法:①對應(yīng)法則;②定義域(兩點(diǎn)必須同時具備)

  (1)函數(shù)解析式的求法:

 、俣x法(拼湊):②換元法:③待定系數(shù)法:④賦值法:

  (2)函數(shù)定義域的求法:

 、俸瑓栴}的定義域要分類討論;

 、趯τ趯(shí)際問題,在求出函數(shù)解析式后;必須求出其定義域,此時的定義域要根據(jù)實(shí)際意義來確定。

  (3)函數(shù)值域的求法:

  ①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉(zhuǎn)化為型如:的形式;

  ②逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;

 、軗Q元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;

 、萑怯薪绶:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來求值域;

 、藁静坏仁椒:轉(zhuǎn)化成型如:,利用平均值不等式公式來求值域;

  ⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。

  ⑧數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來求值域。

  高二數(shù)學(xué)公式總結(jié)

  8、高二數(shù)學(xué)公式總結(jié)

  圓的公式

  1、圓體積=4/3(pi)(r^3)

  2、面積=(pi)(r^2)

  3、周長=2(pi)r

  4、圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2

  5、圓的一般方程x2+y2+dx+ey+f=0

  橢圓公式

  1、橢圓周長公式:l=2πb+4(a-b)

  2、橢圓周長定理:橢圓的周長等于該橢圓短半軸,長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差.

  3、橢圓面積公式:s=πab

  4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

  以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率t,但這兩個公式都是通過橢圓周率t推導(dǎo)演變而來。

  兩角和公式

  1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa

  2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb

  3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

  4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

  倍角公式

  1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

  2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)

  2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)

  3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))

  4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))

  和差化積

  1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)

  2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)

  3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

  4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb

  5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb

高二數(shù)學(xué)知識點(diǎn)及公式總結(jié)2

  a^2-b^2=(a+b)(a-b)

  a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根與系數(shù)的關(guān)系X1+X2=-b/aX1xX2=c/a注:韋達(dá)定理判別式

  b^2-4ac=0注:方程有兩個相等的實(shí)根b^2-4ac>0注:方程有兩個不等的實(shí)根b^2-4ac1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

  1x2+2x3+3x4+4x5+5x6+6x7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑余弦定理b^2=a^2+c^2-2accosB注:角B是邊a和邊c的夾角圓的標(biāo)準(zhǔn)方程(x-a)^2+(y-b)^2=^r2注:(a,b)是圓心坐標(biāo)圓的一般方程x^2+y^2+Dx+Ey+F=0注:D^2+E^2-4F>0拋物線標(biāo)準(zhǔn)方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py直棱柱側(cè)面積S=cxh斜棱柱側(cè)面積S=c"xh

  正棱錐側(cè)面積S=1/2cxh"正棱臺側(cè)面積S=1/2(c+c")h"圓臺側(cè)面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pixr2圓柱側(cè)面積S=cxh=2pixh圓錐側(cè)面積S=1/2xcxl=pixrxl

  弧長公式l=axra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2xlxr錐體體積公式V=1/3xSxH圓錐體體積公式V=1/3xpixr2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側(cè)棱長柱體體積公式V=sxh圓柱體V=pixr2h定理

  86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

  90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)

  95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

  96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

  97性質(zhì)定理2相似三角形周長的比等于相似比

  98性質(zhì)定理3相似三角形面積的比等于相似比的平方99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點(diǎn)的距離等于定長的點(diǎn)的xx

  102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的xx103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的xx104同圓或等圓的半徑相等

  105到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓106和已知線段兩個端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個角的平分線

  108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109定理不在同一直線上的三點(diǎn)確定一個圓。

  110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的'兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  116定理一條弧所對的圓周角等于它所對的圓心角的一半

  117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

  120定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r

【高二數(shù)學(xué)知識點(diǎn)及公式總結(jié)】相關(guān)文章:

高二的數(shù)學(xué)的知識點(diǎn)總結(jié)04-22

數(shù)學(xué)高二知識點(diǎn)總結(jié)03-07

高二數(shù)學(xué)的知識點(diǎn)總結(jié)03-08

高考數(shù)學(xué)知識點(diǎn)公式整理02-17

高考數(shù)學(xué)公式及知識點(diǎn)整理10-10

高二數(shù)學(xué)知識點(diǎn)總結(jié)02-19

高二數(shù)學(xué)的數(shù)列知識點(diǎn)總結(jié)12-02

高二數(shù)學(xué)必修三知識點(diǎn)總結(jié)04-25

高二會考數(shù)學(xué)必考知識點(diǎn)總結(jié)02-24

高二數(shù)學(xué)水平考知識點(diǎn)總結(jié)08-08